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a b s t r a c t

Cyclers are space trajectories that repeatedly encounter the same set of bodies indefi-

nitely. Typically, cyclers are designed to encounter two bodies periodically, with only an

occasional encounter with a third body. Because of the dynamics of the Laplace resonance

in the Jupiter system, cycler trajectories that periodically return to three bodies are

possible for Jupiter missions. Several cycler trajectories are proposed for purposes such as

reducing mission length and increasing the number of flybys in a Jupiter system tour.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Several authors have studied round-trip interplanetary
missions that have led to the concept of cyclers [1–6]. One
example of an interplanetary cycler mission that can travel
between Earth and Mars indefinitely was designed by
Byrnes et al. [7]. These cyclers, known as Aldrin cyclers,
have the capacity to encounter either Earth or Mars up to
15 times in a 15-year period with a total DV of under
2 km/s. Later research has also been done to apply low-
thrust capabilities to cycler design in order to reduce the
flyby V1 at Earth and Mars [8,9].

Russell and Strange [10] extend the concept of cycler
design from interplanetary cyclers to intermoon cycler
trajectories. They focus on two-moon cyclers that would
allow periodic return missions between any two of Jupiter’s
four Galilean moons and Titan–Enceladus cyclers in the
Saturnian system. They propose a three-step model of
designing these trajectories. They first find cycler trajec-
tories in an ideal ballistic model assuming circular, coplanar
orbits for the moons. They then optimize these ideal

trajectories in a patched-conic ephemeris model to mini-
mize DV . Finally, they integrate their patched-conic trajec-
tories in a high-fidelity model.

We propose extending these two-moon cyclers to three-
moon cyclers. We choose the Jupiter system for these
proposed cyclers because all four of the Galilean moons
have a high enough mass to permit gravity assist and the
Galilean moons are all targets for scientific investigation.
Additionally, a 1:2:4 orbital resonance exists among Io,
Europa, and Ganymede called the Laplace resonance. We
note that a Laplace resonance is defined as a 1:2:4 orbital
resonance among three moons or planets [11–15]. The
orbital resonance among Io, Europa, and Ganymede is the
only Laplace resonance in the Solar System. All of the other
orbital resonances in the Solar System only involve reso-
nances between two moons (e.g. the 1:2 resonance
between Dione and Enceladus). Hence, at least for near-
term space missions, the mission design techniques which
are introduced in this paper to exploit the Laplace reso-
nance are uniquely applied to Jupiter system missions. (The
only other known example of a Laplace resonance involves
three exoplanets around the star GJ876, which is 15.4 light
years away [16].)

The synchronicity of the Laplace resonance allows three-
moon cyclers to have periods that are commensurate with
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the period of the Laplace resonance. Laplace-resonant
cyclers reoccur indefinitely, so an entire Jupiter tour can
be done while the spacecraft is in an Io–Europa–Ganymede
cycler. In addition to indefinitely repeatable cyclers, we also
propose cyclers that only reoccur once. These one-period
three-moon cyclers contain two sets of three subsequent
flybys and are useful for quickly reducing the orbital energy
of a spacecraft in Jupiter orbit. These Laplace-resonant
triple cyclers are found in an ideal model by using an
extension of the Laplace resonance phase angles analysis
proposed by Lynam et al. [11] The existence of these triple
cyclers is confirmed by using the ephemeris models within
AGI’s STK (Satellite Tool Kit) [17] and JPL’s MALTO (Mission
Analysis Low Thrust Optimization) [18]. Since many of
these triple-cycler trajectories have perijoves that are inside
or near Jupiter’s radiation field and ring plane, we also
discuss the effects of these hazards on potential triple
cycler spacecraft.

2. Laplace resonance phase angles analysis

2.1. Patched conic model

We perform the initial design of intermoon triple cyclers
within the patched conic model [19–22]. This preliminary
model does not incorporate the ephemerides of Jupiter’s
moons, so the moons are modeled to have circular, coplanar
orbits that are constrained to be consistent with the Laplace
resonance [12]. In our patched-conic model, the trajectory
is modeled as a Keplerian two-body orbit around Jupiter
with hyperbolic gravity-assists of the Galilean moons
applied as instantaneous changes in the orbital elements
of the two-body orbit about Jupiter. These gravity-assist
flybys give mission designers the ability to modify the
Jupiter-centered orbit of the spacecraft without expending
DV . In the case of Laplace-resonant triple-cyclers, we design
the three gravity-assists flybys of Io, Europa, and Ganymede
to have a net effect of holding the semi-major axis and
eccentricity of the Jupiter-centered orbit constant while
shifting the argument of periapsis by 5.21. We also need to
ensure that the spacecraft can encounter all three moons in
the same orbit. To this end, we must find the true anomaly
of the spacecraft (both before and after each flyby) and the
times of flight of the intermoon transfers. The true anoma-
lies and times of flight are found by re-arranging the conic
equation and Kepler’s equation as follows [11]:

fmoon ¼�cos�1 �amoonþasc,inð1�ðesc,inÞ
2
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where fmoon is the true anomaly of the spacecraft as it
approaches the desired moon, amoon is the semi-major axis
of the desired moon’s orbit, and asc,in and esc,in are the semi-
major axis and eccentricity, respectively, of the spacecraft’s
orbit before the gravity-assist is modeled, and the time of
flight between flybys is
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where

Emoon ¼�cos�1½ðasc,out�amoonÞ=ðasc,outesc,outÞ� ð3Þ

and where Emoon is the eccentric anomaly of a moon; asc,out

and esc,out refer to the semi-major axis and eccentricity of
the spacecraft during its transfer. The patched-conic model
also requires that the orbital elements of an initial orbit are
chosen and that the effects of all gravity-assists on the orbit
are modeled.

2.2. The Laplace resonance

The Laplace resonance is a 1:2:4 orbital resonance that
governs the motion Ganymede, Europa, and Io (i.e. Gany-
mede has double the orbital period of Europa and four
times the orbital period of Io). The Laplace resonance
constrains the relative positions of Ganymede, Europa,
and Io with the following equation [11–14]:

1801¼ 2lGa�3lEuþlIo ð4Þ

where lIo is Io’s mean longitude, lEu is Europa’s mean
longitude, and lGa is Ganymede’s mean longitude.

Lynam et al. [11] reformulated Eq. (4) to obtain the
following phase angle relations among Ganymede, Europa,
and Io:

DlEu,Io ¼ 1801þ2DlGa,Eu ð5Þ

DlEu,Io ¼ f7601,1801gþ2DlGa,Io=3 ð6Þ

DlGa,Io ¼7901þ3DlEu,Io=2 ð7Þ

DlGa,Io ¼ 3DlGa,Euþ1801 ð8Þ

DlGa,Eu ¼ 7901þDlEu,Io=2 ð9Þ

DlGa,Eu ¼ f7601,1801gþDlGa,Io=3 ð10Þ

where DlEu,Io is the angle between the position of Europa
and Io defined by the following relation:

DlEu,Io � lIo�lEu ð11Þ

We note that DlGa,Io and DlGa,Eu are defined analo-
gously. The phase angle relations in Eqs. (5)–(10) allow the
position (or two or three possible positions) of any one of
the moons to be determined from the positions of the other
two moons at any given time. Eqs. (5) and (8) have unique
solutions, Eqs. (7) and (9) have two solutions, and Eqs. (6)
and (10) have three solutions. The physical interpretation of
the multiple solutions is that a moon could be in two or
three possible positions if only the angle between the other
two moons is known. Lynam et al. [11] apply this phase
angle analysis to find Laplace-resonant triple-satellite-aided
capture sequences that capture into orbit around Jupiter
using gravity-assist flybys of Ganymede, Europa, and Io. In
this paper, we use Eqs. (5)–(10) to find similar triple-
gravity-assist sequences that repeat periodically once the
spacecraft is already in orbit about Jupiter.

The dynamics of the Laplace resonance are useful for
finding these triple-gravity-assist sequences that can form
triple cyclers. The mean motion of each moon governs its
dynamics by varying the mean longitudes over time. We
write the mean longitudes of each moon as a function of
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