Contents lists available at ScienceDirect

ELSEVIER

journal homepage: www.elsevier.com/locate/actaastro

Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

R. Bevilacqua^{a,*}, T. Lehmann^b, M. Romano^b

^a Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Jonsson Engineering Center, 110 8th Street, Troy, NY 12180-3590, United States

^b Mechanical and Aerospace Engineering Department, code MAE/MR, 700 Dyer Rd., Naval Postgraduate School, Monterey, CA 93943, United States

ARTICLE INFO

Article history: Received 3 July 2009 Received in revised form 31 July 2010 Accepted 5 August 2010 Available online 15 September 2010

Keywords: Multiple spacecraft assembly Autonomous control Linear quadratic regulator Artificial potential function Wall-following method Real-time control Laboratory experimentation On-the-ground spacecraft simulation Autonomous on orbit operations Formation flight Spacecraft servicing

ABSTRACT

This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decisional logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The ability of multiple spacecraft systems to autonomously track, rendezvous, inspect, and dock has many potential benefits for spacecraft applications. Among them the possibility to resupply consumables, perform repairs, replace failed components and construct modular structures on orbit. There is a current appeal to build smaller and lighter spacecraft to reduce production time and cost, decrease launch costs, and increase launch availability. Fractionated spacecraft, composed of multiple

* Corresponding author. Tel.: +1 518 276 4274.

lehmann_tanya@yahoo.com (T. Lehmann),

mromano@nps.edu (M. Romano).

smaller spacecraft, independently launched and configured in space, may be one way of achieving the benefits of larger satellites with the launch flexibility of small satellites [1]. Control algorithms allowing multiple spacecraft to autonomously avoid each other or rendezvous and dock with each other are a critical component of making autonomous close proximity spacecraft operations.

Previous research and on orbit demonstration of autonomous rendezvous and docking dates back to 1998 [2]. The Air Force Research Laboratory (AFRL) has worked on a series of close-proximity satellite experiments beginning with XSS-10, launched in 2003 to test close-in satellite inspection techniques [3]. Subsequent AFRL programs are under development as described in Refs. [4–7].

NASA tested similar technologies and concepts with the DART mission [8,9].

E-mail addresses: bevilr@rpi.edu (R. Bevilacqua),

^{0094-5765/\$ -} see front matter \circledcirc 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.actaastro.2010.08.012

Nomenclature		Lo	minimum approach distance from chaser COM
Abbreviations and acronyms		Lt	to obstacle center distance from spacecraft simulator COM to
ΔΕΡΙ	Air Force Research Laboratory		each thruster
	artificial potential function	m_s	mass of spacecraft
	hody fixed coordinate system	Ν	LQR state-control combination gain matrix
DUS	bouy-lixed coolulliate system	Q	LQR state gain matrix
	Center of mass	R	LQR control effort gain matrix
DARPA	A Defense Advanced Research Projects Agency	vm	maximum allowed velocity
DOF	degrees of freedom	<u>r</u> _{ch}	spacecraft simulator's own position in ICS
ESA	European Space Agency	<u>r</u> dock	vector from target COM to the docking port
ICS	inertial coordinate frame	r_g	chaser's current distance to the goal
IGPS	indoor global positioning system	r _{init}	chaser's initial distance to the goal
LQR	linear quadratic regulator	r_m	maximum allowed distance from chaser to goal
LVLH	local vertical local horizontal	ro	distance between the chaser's COM and the
NASA	National Aeronautics and Astronautics		center of the obstacle
	Administration	<u>r</u> obs	position of other chase spacecraft simulator in
NRL	Naval Research Laboratory		ICS
NPS	Naval Postgraduate School	<u>r</u> t	vector from chaser COM to target COM
PD	proportional-derivative	$\underline{r}_{t\sigma}$	position of the target spacecraft simulator in ICS
POSF	Proximity Operations Simulator Facility	รั	solution of the algebraic Riccati equation
RTAI	real-time application interface	T_z	torque about the <i>z</i> -axis
SPHER	RES synchronized position hold engage and	и	control effort
	reorient experimental satellites	<u>v</u>	relative velocity of chaser spacecraft and
SRL	Spacecraft Robotics Laboratory		obstacle
		\underline{v}_{ch}	chase simulator's own velocity on the POSF
Symbo	ols		floor in ICS
		\underline{v}_{obs}	velocity of other chase spacecraft simulator on
A, B, C	C, D state space matrices		the POSF floor in ICS
<u>a</u>	acceleration determined by LQR/APF control	\underline{v}_{tg}	velocity of the target spacecraft simulator on
<u>a</u> _{APF}	acceleration determined by APF control effort	0	the POSF floor in ICS
\underline{a}_{LOR}	acceleration determined by LQR control effort	v_m	maximum allowed relative velocity between
am	maximum available acceleration magnitude		spacecraft
<u>a</u> _o	acceleration of chase spacecraft toward the	\underline{v}_{o}	chaser's velocity toward the center of the
	obstacle		obstacle
\underline{a}_{\perp}	perpendicular acceleration determined by	α_Q	LQR state performance gain
	enhanced LQR/APF control	β_R	LQR control effort gain
$a_{X,Y,Z}$	acceleration components due to control effort	γ	angle measured counter-clockwise from <u>r</u> dock
	in ICS		to <u>r</u> _t
$a_{x,y,z}$	acceleration components due to control effort	σ	standard deviation for obstacle region of influence
	in BCS	θ_{ch}	chase spacecraft simulator's angular displace-
D_o	obstacle region of influence		ment about its <i>z</i> -axis
D _{stop}	stopping distance	θ_{tg}	target spacecraft simulator's angular displace-
d_a	decay constant for acceleration toward goal		ment about its <i>z</i> -axis
d_o	factor of safety for obstacle region of influence	θ_{ch}	chase spacecraft simulator's angular velocity
$F_{i,req}$	required equivalent force of thruster <i>i</i>		about its z-axis
F_t	spacecraft available thrust force	θ_{tg}	target spacecraft simulator's angular velocity
$F_{ heta}$	force required to affect commanded angular		about its <i>z</i> -axis
	acceleration	θ	angular acceleration about the <i>z</i> -axis
J	cost function	ω	LVLH angular velocity
\mathbf{K}_{LQR}	LQR state feedback gain	x, y, z	LVLH coordinates
k_a	acceleration shaping function	ż, ż, ż	LVLH velocities
k _s	safety shaping function	$\underline{X} = \{X, y\}$	$(y,z,\dot{x},\dot{y},\dot{z})^T$ state vector
k_{v}	velocity shaping function		
L	half the length of the spacecraft simulator	the spacecraft simulator Subscripts and superscripts	
	measured in the $x-y$ plane		
L _{max}	distance between opposite corners of the	$(\cdot)_{\rho}$	error
	spacecraft in the <i>x</i> - <i>y</i> plane	. /6	

Download English Version:

https://daneshyari.com/en/article/1715943

Download Persian Version:

https://daneshyari.com/article/1715943

Daneshyari.com