
Peristaltic transport of a viscoelastic fluid in a channel

Dharmendra Tripathi

Mathematics Group, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, Andhra Pradesh, India

a r t i c l e i n f o

Article history:

Received 25 June 2010

Received in revised form

13 August 2010

Accepted 15 September 2010
Available online 8 October 2010

Keywords:

Peristaltic transport

Fractional Maxwell model

Pressure difference

Friction force

Adomian decomposition method

a b s t r a c t

This paper is devoted to the study of the peristaltic transport of viscoelastic non-Newtonian

fluids with fractional Maxwell model in a channel. Approximate analytical solutions have

been constructed using Adomian decomposition method under the assumption of long

wave boundary layer type approximation and low Reynolds number. The effects of

relaxation time, fractional parameters and amplitude on the pressure difference and

friction force along one wavelength are received and analyzed. The study is limited to one

way coupling model with forward effect of the fluid on the peristaltic wall. It is evident

from the result that pressure diminishes with increase in relaxation time and the effects of

both fractional parameters on pressure are opposite to each other. The influences of these

parameters on friction force are opposite to that of pressure.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The propulsion of bio-fluids by continuous wavelike
muscle contraction and relaxation of the walls of tubular
organs such as oesophagus, intestine, ureter and blood
vessels, is known as peristalsis. Latham [1] was probably the
first to investigate the mechanism of peristalsis in relation to
mechanical pumping. Since then, several investigators [2–5]
have contributed to the study of peristaltic motion in both
mechanical and physiological situations. In particular,
Shapiro et al. [5] have investigated the peristaltic pumping
under assumption of long wavelength and low Reynolds
number. They considered the two-dimensional and axisym-
metric flows of Newtonian fluid and they discussed the
mechanical efficiency and some important phenomena of
peristaltic pumps, such as reflux and trapping. Their
investigation discussed only about Newtonian fluids and
does not cover the peristaltic flow of other fluids, such as
non-Newtonian fluids.

The non-Newtonian fluids are being considered more
important and appropriate in view of engineering and
biological applications as compared with the Newtonian

fluids. Viscoelastic fluid is a non-Newtonian fluid, which
contains both viscous and elastic properties. Most of the
biological fluids such as blood, chyme, and food bolus are
found to be viscoelastic in nature. Bohme and Friedrich [6]
studied peristaltic flow of viscoelastic liquids. Some other
workers [7–11] have investigated peristaltic transport of
viscoelastic fluid with Maxwell model and they have
discussed the effect of relaxation time on the peristaltic
transport. Hayat et al. [12–15] have investigated the
peristaltic transport of viscoelastic fluids with Jeffrey
model and they have also discussed the effect of relaxation
and retardation time on the peristaltic transport.

Shugan et al. [16] have studied about the two-way
coupling model for wave motion in two-phase medium
‘‘fluid–elastic walls’’ accounting for interaction between
those phases is considered within the frames of the
boundary layer type approximation. Further, Shugan and
Smirnov [17] have extended for peristaltic flow in a
channel under standing wall’s vibrations.

The constitutive equations with ordinary and fractional
time derivatives have been introduced to describe the
viscoelastic properties of materials in various fields.
Rheological models with fractional time derivatives have
played an important role in the study of the valuable tool of
viscoelastic properties. In general, fractional Maxwell model
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is derived from known Maxwell model by replacing
ordinary derivatives of shear stress-strain relationship by
derivatives of fractional order.

Recently, Hilfer [18] has developed a model of
viscoelastic fluid with fractional derivative and shown
its applications in physics. Using this fractional derivative
model, some authors [19–21] have studied unsteady flow
of viscoelastic fluids. They have obtained solutions by
Laplace and Fourier transforms. Friedrich [22] has con-
sidered a particular case of this model to determine
relaxation and retardation time with different fractional
time derivatives in the shear stress-strain relationship by
using the Riemann–Liouville definition. Taking Friedrich’s
model, some workers [23–27] have also investigated
unsteady flow of viscoelastic fluids through channel and
circular cylindrical tube. The solutions for velocity field
and the associated shear stress have been obtained by
using Laplace transform, Fourier transform, Weber trans-
form, Hankel transform and discrete Laplace transform.

From the literature available, it is evident that no study
on peristaltic transport of viscoelastic fluids with frac-
tional Maxwell model under the assumption of long
wavelength and low Reynolds number has been done.
Adomian decomposition method (ADM) is used to obtain
approximate analytical solution of the problem and the
numerical results of the problem for different cases
are depicted graphically. The effects of relaxation time,
fractional parameters and amplitude on the pressure
difference and friction force across one wavelength are
discussed. The elegance of this method can be attributed
to its simplistic approach in seeking the approximate
analytical solution for the problem.

ADM was first proposed by Adomian [28–31] and used
to solve a wide class of nonlinear and partial differential
equations (PDE) [32–38]. ADM will be applied whenever it
is appropriate to the solutions of PDE of any order. The
numerical solutions reveal that, the method is user
friendly, flexible, accurate, effective and powerful to solve
large class of differential equations. ADM is newer
approach to provide an approximate analytical solution
to linear and nonlinear problems and it is particularly
valuable as a tool for scientists, engineers and applied
mathematicians. This technique provides immediate and
visible symbolic terms of analytical solution, as well as
numerical approximate solutions to both linear and
nonlinear differential equations without linearization or
discretization. The advantage of this method is its fast
convergence of the solution.

2. Mathematical model

The constitutive equation of shear stress–strain
relationship of viscoelastic fluid with fractional Maxwell
model is given by
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where, ~l1, ~t , ~t, g are the relaxation time, time, shear
stress, shear strain, G¼ m= ~l1 is the shear modulus, m is
the viscosity and a, b are the fractional parameters such

that 0oarbr1. This model reduces to ordinary
Maxwell model if a=b=1 and Classical Navier Stokes
model, when a=0, b=1.

The governing equations of motion for incompressible
fluids in two-dimensional case are
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where, r, ~u, ~x, ~v, ~Z, ~pare the fluid density, velocity,
axial coordinate, transverse velocity, transverse coordi-
nate and pressure.

The physical parameters are non-dimensionalized as
follows:
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where, ~h, ~f, ~Q are transverse displacement of the walls,
amplitude of the wave, volume flow rate and their
counterparts without � are the corresponding para-
meters in the dimensionless form. The parameters l, a, c

symbolize the wavelength, the semi-width of the channel
and the wave velocity, respectively. Re stands for the
Reynolds number while d is defined as the wave number.

Using Eq. (1) in Eq. (2), in view of non-dimensionalisa-
tion and low Reynolds number approximation, reduced to
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Boundary conditions are given by
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Integrating Eq. (4) with respect to Z, and using first
condition of Eq. (5), we get
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Further integrating Eq. (5) from h to Z, yields

@b�1u

@tb�1
¼

l�ðb�1Þ
1

2
1þla1

@a

@ta

� �
@p

@x
ðZ2�h2Þ: ð7Þ

The volume flow rate is defined as Q ¼
R h

0 udZ, which,
by virtue of Eq. (7), reduces to
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The transformations between the wave and the
laboratory frames, in the dimensionless form, are given by

x¼ x�t, y¼ Z, U ¼ u�1, V ¼ v, q¼ Q�h, ð9Þ

where, the left side parameters are in the wave frame and
the right side parameters are in the laboratory frame.
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