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Abstract

The paper brings forward safety estimation models for different lifecycles on the basis of principle of maximum assured result.
© 2008 Elsevier Ltd. All rights reserved.

Keywords: Failure mechanism; Emergency; Random process; Distribution function

1. Statement of the problem

By space launch system safety we mean set of quali-
ties of the space launch system (SLS) never in its lifecy-
cles to develop into states that are hazardous for human
welfare, environment and any kind of property.

Safety assurance problem is one of the most
important systematic problems of today. Many as-
pects are responsible for qualitative approach to solve
this problem and in necessity to quantify the safety:
specification of quantitative safety requirements in
normative documents [1]; requirement of compulsory
certification of space technology [2]; necessity to boost
competitiveness under globalization conditions; cost
optimization to ensure safety of subsystems compo-
nents, etc. Safety is laid during designing, proved during
certification, implemented during manufacturing and
confirmed in operation [3]. This paper, in addition to
numerous publications (for example, [3,4]), describes
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safety estimation models for different lifecycles of the
SLS, as well as failure probability estimation models on
the basis of principle of maximum assured result [5].

Principle lifecycles of the SLS that require safety
assurance and mathematical models to estimate safety
are: assembly and testing at the manufacturer’s; loading
and unloading operations; transportation to processing
area and launch site; on-site mounting and testing; fu-
elling; Stage 1 engine start; launch abort and neutral-
ization; initial and subsequent flight paths and disposal
of launch vehicle (LV).

SLS safety assurance model corresponds to safety
control paradigm when creating a new technology:
design–separation–protection–caution–training. Design
factor assumes development of systems on the basis
of principles of natural safety, excluding dangerous
mishaps. Separation factor is implemented through
physical segregation of hazardous activities from the
personnel. Protection factor stands for organization of
special safety systems (in particular, LV emergency
destruction system, protected areaon the territory of
the launch facilities). Caution factor means compen-
sating measures in case of emergency. Training factor
includes systems to build equipment handling skills
and personnel development.
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Let us consider approaches to estimate failure prob-
ability of the SLS subsystems’ components. Doing
so we will rely on two provisions by Hermeyer [5]:
objective function of the operation depends on three
points—human strategy, random and undetermined fac-
tors; in case of indeterminacy the principle of maximum
assured result is used taking into account well-known
facts.

2. Factors—probability values

Let us estimate destruction probability of spherical
bottle at design moment of time (case of well-known
failure mechanism).

To take into proper account the indeterminacies
(inaccuracy of strength analysis mathematical model,
manufacturing technology and effect of human factor,
testing, loading conditions, etc.), we introduce factors
x3 and x5, that equal to the relation between actual
values of load bearing capacity plus load and design
values, respectively. Note that data to estimate factor
x3 can be collected during inspection sampling tests
and other break-down tests, and for factor x5 telemetry
data for similar LV. Failure probability q equals:

q =
∫ 0

zmin

f (z)dz

=
∫ ∫

Z=R−Q�0
f (R) f (Q)dR dQ

×
∫ ∫ ∫ ∫ ∫

(z= 2x1x2
r x3−x4x5)<0

5∏
i=1

fi (xi )dxi , (1)

where zmin is minimal operability function z, R =
(2x1x2/r )x3 bearing capacity, Q = x4x5 internal pres-
sure, x1 ultimate strength, x2 thickness, r radius (non-
random value), x4 pressure and f (R), f (Q), f (z),
f (xi ) density of distribution.
Estimation (1) was first calculated for the case when

factors (1)—Pearson distribution of I type with param-
eters taken from [6]

fi (xi ) = c

(
1 + xi − �i

x ′′
i − �i

)l(
1 − xi − �i

�i − x ′
i

)k

, (2)

where �i is the mathematical expectation, x ′
i , x

′′
i are

minimal and maximal values, l, k are exponents and c
is the normalizing factor.

Then the same data were used to determine the initial
moments of distribution Z , R, Q, x3, x5 of first to fourth
orders that acted as constraints when finding maximums
of expressions of functionals (1), which depend on
unknown densities f (Z ), f (R), f (Q), f (xi ) (i = 3, 5).

Table 1
Values of maximum estimates of failure probability

Number of moments Random values

Z R, Q x1, x2, x3, x4, x5

1 0.6425 0.4695 0.2784
2 0.0702 0.0346 0.0303
3 0.0471 0.0135 0.0116
4 0.009 0.003 0.00011

Values of moments Z , R, Q, are given in [6]. Table 1
contains values of maximum estimates of failure prob-
ability (MEFP), calculated from techniques of [7,8].

Results given in Table 1 allow for two conclusions.
For one thing, approaches of [7,8] are barely useful
to turn to practical purposes, since failure probability
comes out overestimated if compared to the case when
density of distribution is well known (q=1×10−9). For
another thing, the more data are used for calculation of
MEFP the more accuracy is attained, which means that
more data should be added. So it is suggested to use
distribution of factors that characterize performance and
can be accumulated from statistical data on similar LV.
Pearson curves of type I is the bounded distribution of
various shapes, has a simple view and is widely used,
Eq. (2). Exponents l and k, giving minimum to safety
estimation, are given in [6].

In this case MEFP is considerably lower than those
given in Table 1: with tolerance and mathematical ex-
pectation z estimate q is equal to 0.029; with known
tolerances and mathematical expectations R and Q −
q = 0.0061; with known tolerances and mathematical
expectations of four factors (x1, x2, r, x4) q=1×10−5.
To further minimize MEFP it is necessary to add data
on distributions of l and k in Eq. (2):

q =
∫ ∫ ∫ lmax

lmin

∫ ∫ ∫
(z= 2x1x2

r x3−x4x5)<0

×
∫ ∫ 5∏

i=1

fi (li )dxi . (3)

Integral equations (1) and (3) are calculated by di-
rected enumeration of possibilities algorithm in the zone
of failure [6]. Since the zone is small, the required calcu-
lation accuracy can be reached within less than 10min
of personal computing.

3. Factors—probability processes

Next we will consider MEFP estimation approach
with random processes and known distribution laws in
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