
Acta Astronautica 63 (2008) 690–694
www.elsevier.com/locate/actaastro

ACADEMY TRANSACTIONS NOTE

On the magnetic attitude control for spacecraft via the �-strategies
method

Georgi V. Smirnova,∗, Mikhail Ovchinnikovb,1, Francisco Mirandac

aDepartamento de Matemática Aplicada, Faculdade de Ciências, Centro de Matemática da Universidade do Porto, Universidade do Porto,
Rua do Campo Alegre 687, 4169-007 Porto, Portugal

bKeldysh Institute for Applied Mathematics, 4 Miusskaya Sq., 125047 Moscow, Russia
cInstituto Politécnico de Viana do Castelo, Apartado 574, 4901-908 Viana do Castelo, Portugal

Received 15 April 2008; accepted 13 May 2008

Abstract

We develop a new approach to stabilization problems based on a combination of the Lyapunov functions method with local
controllability properties. The stabilizability is understood in the sense of �-strategies introduced by Pontryagin in the frame of
differential games theory. To illustrate the possibilities of our approach we consider a satellite with two magnetic coils directed
along its principal inertia axes. Its circular orbit is neither polar nor equatorial. We show that there exists an �-strategy stabilizing
an Earth pointing satellite, whenever the deviations from the equilibrium position are small enough.
© 2008 Elsevier Ltd. All rights reserved.

Keywords: Attitude control; Satellite control; Time-varying system; Periodic motion; Stability

1. Introduction

Attitude control system (ACS) is of great importance
for a spacecraft mission success. The attitude control of
small satellites is usually fulfilled by passive or semi-
passive ACSs. These systems use the satellite interac-
tion with the gravitational and magnetic field of the
planet, atmospheric drag and the gyroscopic proper-
ties of spinning bodies. The general approaches to ob-
tain main parameters of passive ACSs are presented in
[1], for example. These satellite orientation methods are
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sufficient if the satellite does not require complex reori-
entation maneuvers during the flight. Otherwise active
ACSs have to be used. From the simplicity point of view
the most reliable and light ACSs are active magnetic
systems [2,3]. The main difficulty in the implementation
of such a system and in the proof of its normal opera-
tion consists in the fact that the control torque lies in the
plane orthogonal to the magnetic field vector. The atti-
tude stabilization systems with magnetic actuators for
Earth pointing spacecraft on a circular orbit have been
the subject of extensive studies during the last years
(see the survey [3] and the references therein). Among
numerous techniques developed to solve this problem
the most natural one is the use of Lyapunov func-
tions method combined with the Krasovski–LaSalle
theorem [2]. The Lyapunov function is used to con-
struct a stabilizer depending on current time and
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position of the system. Then, the Krasovski–LaSalle
theorem is applied to prove the asymptotic stability of
the equilibrium position. However, a rigorous verifica-
tion of the Krasovski–LaSalle theorem conditions faces
serious technical difficulties which can hardly be over-
come even with the help of systems for symbolic com-
putations, like Mathematica or Maple. In this paper we
suggest an alternative way to solve stabilization prob-
lems. This method is based on a combination of the
Lyapunov functions method with local controllability
conditions. In many situations this method admits a rig-
orous mathematical justification and leads to effective
numerical methods. The stabilizability is understood in
a general sense. We use �-strategies introduced by Pon-
tryagin in the frame of differential games theory [4].
According to this approach the stabilizing control is
constructed as a function of time defined in a small time
interval and not as a feedback. From the practical point
of view, �-strategy is similar to stabilizer which depends
on the time and position only, because it usually is im-
plemented as a generator of piecewise constant con-
trols. However, the use of this approach helps to over-
come serious mathematical difficulties and is more ef-
fective in applications. The numerical implementation
of this method is based on the construction of multistep
reachability sets [5]. Note that the ideas from the dif-
ferential games theory where also used in [6] to solve
another problem from stabilization theory. To illustrate
the possibilities of our approach we consider a satel-
lite with two magnetic coils directed along its principal
inertia axes. Its circular orbit is neither polar nor equa-
torial. We show that there exists an �-strategy stabiliz-
ing an Earth pointing satellite, whenever the deviations
from the equilibrium position are small enough. One
coil is not sufficient to guarantee such a stabilization
[7]. Throughout this paper we denote by R the set of
real numbers and by Rn the usual n-dimensional space.
The inner product of two vectors x, y ∈ Rn is expressed
by 〈x, y〉. The interior of a set C ⊂ Rn is denoted by
int C. If A is a real matrix, then the transposed matrix
is denoted by A∗. By x × y we shall denote the vector
product of the vectors x, y ∈ R3.

2. Stabilization via ε-strategies

Consider a control system

ẋ = f (t, x, u), u ∈ U . (1)

Assume that 0 ∈ int U ⊂ Rk and a function f :
R × Rn × U → Rn, satisfies the following conditions:
it is sufficiently smooth, f (t, 0, 0) = 0, t ∈ R, for all
(t, x) ∈ R × Rn, the set f (t, x, U) is compact and

convex, there exists M > 0 such that ‖f (t, x, u)‖�M ,
for all (t, x, u) ∈ R × Rn × U , there exists T > 0
such that f (t + T , x, u) = f (t, x, u), for all (t, x, u) ∈
R × Rn × U . Let u(t) ∈ U , t � t0, be a measurable
bounded control. The solution to the Cauchy prob-
lem ẋ(t) = f (t, x(t), u(t)), t > t0, x(t0) = x0, is de-
noted by x(·, t0, x0, u(·)), and the symbol X(t0, x0)

is used for the set of all solutions. Consider the so-
lution x̂(·) = x̂(·, t0, x0, 0) ∈ X(t0, x0) corresponding
to the control u(t) ≡ 0. Set A(t) = ∇xf (t, x̂(t), 0)

and B(t) = ∇uf (t, x̂(t), 0). Introduce a lineariza-
tion of control system (1) along the trajectory x̂(·):
˙̄x(t)=A(t)x̄(t)+B(t)w(t), w(t) ∈ Rk . The set of its so-
lutions x̄(·, t0, x̄0, w(·)) is denoted by X̄(t0, x0). Define
the reachability sets R(t1, t0, x0)={x(t1, t0, x0, u(·)) ∈
Rn|x(·, t0, x0, u(·)) ∈ X(t0, x0)} and R̄(t1, t0, x̄0) =
{x̄(t1, t0, x̄0, u(·)) ∈ Rn|x̄(·, t0, x̄0, u(·)) ∈ X̄(t0, x̄0)}.
Recall a well-known result from the control theory (see
[8], for example).

Theorem 1. The linearized system is controllable on
the interval [t0, t1], i.e. R̄(t1, t0, 0) = Rn, if and only if,
only the trivial solution x̄∗(t) ≡ 0 to the adjoint differ-
ential equation ˙̄x∗(t) = −A∗(t)x̄∗(t), t ∈ [t0, t1], sat-
isfies the orthogonality condition B∗(t)x̄∗(t) = 0, t ∈
[t0, t1]. The condition R̄(t1, t0, 0)=Rn implies that con-
trol system (1) is controllable around the trajectory x̂(·)
on the interval [t0, t1], i.e. x̂(t1) ∈ int R(t1, t0, x0).

Let V : Rn → R be a sufficiently smooth function
satisfying the conditions V (0)=0 and V (x) > 0, x �= 0.
Its Lipschitz constant is denoted by LV .

By �-strategy � we mean a map (t0, x0) → (�, u(·)) ∈
R+×L∞([t0, t0+�], U). An �-strategy � generates a tra-
jectory defined in the intervals [t0, t0 +�1], [t0 +�1, t0 +
�1 +�2], etc. This trajectory is denoted by x(t, t0, x0, �).

Theorem 2. Assume that there exist a neighborhood �
of the point x = 0 and �0 > 0 such that for all x0 ∈ �,
t0 ∈ R and � ∈]0, �0[ there is a measurable bounded
control u(t) ∈ U , t ∈ [t0, t0 + �], satisfying V (x(t0 +
�, t0, x0, u(·))) < V (x0). Then there exist a neighbor-
hood �1 of the point x = 0 and an �-strategy � de-
fined in R × �1, such that for any t0 ∈ R, the equality
limt→+∞ x(t, t0, x0, �) = 0 holds.

Proof. Consider a monotone decreasing sequence
Vm which tends to zero when m goes to infinity. Let
�m={x : V (x) < Vm} and �m=(Vm−1−Vm)/(2LV M),
m = 1, 2, . . . . Without loss of generality, �m < �0.
The �-strategy � is defined as follows. Let (t0, x0) ∈
R × �m−1\�m. The pair (�, u(·)) is a solution to
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