Available online at www.sciencedirect.com

S(:IEN(JE‘dDIFIECT®

PERGAMON

Acta Astronautica 58 (2006) 648—-661

ARG
ASIRNNUIER

www.elsevier.com/locate/actaastro

Generating requirements for complex embedded systems using
State Analysis

Michel D. Ingham*, Robert D. Rasmussen, Matthew B. Bennett, Alex C. Moncada
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive M/S 301-225, Pasadena, CA 91109, USA

Received 21 September 2005; accepted 3 January 2006
Available online 4 May 2006

Abstract

It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no
longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software
engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically
encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software
specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must
perform the translation of requirements into software code, hoping to accurately capture the systems engineer’s understanding of
the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems
engineer’s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called
State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This
paper describes how requirements for complex aerospace systems can be developed using State Analysis, using representative

spacecraft examples.

© 2006 International Astronautical Federation. Published by Elsevier Ltd. All rights reserved.

1. Introduction

As the challenges of space missions have grown
over time, we have seen a steady trend toward greater
automation, with a growing portion assumed by the
spacecraft. This trend is accelerating rapidly, spurred
by mounting complexity in mission objectives and the
systems required to achieve them. In fact, the advent
of truly self-directed space robots is not just an immi-
nent possibility, but an economic necessity, if we are
to continue our progress into space.

* Corresponding author.

E-mail addresses: michel.d.ingham@jpl.nasa.govak (M.D.
Ingham), robert.d.rasmussen@jpl.nasa.gov (R.D. Rasmussen),
matthew.b.bennett@jpl.nasa.gov (M.B. Bennett),
alex.c.moncada@jpl.nasa.gov (A.C. Moncada).

What is clear now, however, is that spacecraft design
is reaching a threshold of complexity where custom-
ary methods of control are no longer affordable or suf-
ficiently reliable. At the heart of this problem are the
conventional approaches to systems and software en-
gineering based on subsystem-level functional decom-
position, which fail to scale in the tangled web of in-
teractions typically encountered in complex spacecraft
designs. A straightforward extrapolation of past meth-
ods has neither the conceptual reach nor the analytical
depth to address the challenges associated with future
space exploration objectives.

Furthermore, there is a fundamental gap between the
requirements on software specified by systems engi-
neers and the implementation of these requirements by
software engineers. Software engineers must perform
the translation of requirements into software code,

0094-5765/$ - see front matter © 2006 International Astronautical Federation. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.actaastro.2006.01.005


http://www.elsevier.com/locate/actaastro
mailto:michel.d.ingham@jpl.nasa.gov
mailto:robert.d.rasmussen@jpl.nasa.gov
mailto:matthew.b.bennett@jpl.nasa.gov
mailto:alex.c.moncada@jpl.nasa.gov

M.D. Ingham et al. / Acta Astronautica 58 (2006) 648—661 649

hoping to accurately capture the systems engineer’s un-
derstanding of the system behavior, which is not always
explicitly specified. This gap opens up the possibility
for misinterpretation of the systems engineer’s intent,
potentially leading to software errors.

In this paper, we describe a novel systems engineer-
ing methodology, called State Analysis, which addresses
these challenges by asserting the following basic prin-
ciples:

e Control subsumes all aspects of system operation. It
can be understood and exercised intelligently only
through models of the system under control. There-
fore, a clear distinction must be made between the
control system and the system under control.

e Models of the system under control must be explic-
itly identified and used in a way that assures consen-
sus among systems engineers. Understanding state is
fundamental to successful modeling. Everything we
need to know and everything we want to do can be
expressed in terms of the state of the system under
control.

e The manner in which models inform software de-
sign and operation should be direct, requiring mini-
mal translation.

State Analysis improves on the current state-of-the-
practice by producing requirements on system and soft-
ware design in the form of explicit models of system be-
havior, and by defining a state-based architecture for the
control system. It provides a common language for sys-
tems and software engineers to communicate, and thus
bridges the traditional gap between software require-
ments and software implementation. The State Analysis
methodology is complemented by a database tool that
facilitates model-based software requirements capture.

1.1. Paper outline

In this paper, we discuss the state-based control ar-
chitecture that provides the framework for State Anal-
ysis (Section 2), we emphasize the central notion of
state, which lies at the core of the architecture (Section
3), we present the process of capturing requirements on
the system under control in the form of models (Sec-
tion 4), and we illustrate how these models are used in
the design of a control system (Section 5). We then dis-
cuss the database tool used for documenting the models
and requirements (Section 6). Finally, we describe the
Mission Data System (MDS), a modular multi-mission
software framework that leverages the State Analysis
methodology (Section 7).

2. State-based control architecture

State Analysis provides a uniform, methodical, and
rigorous approach for:

e discovering, characterizing, representing, and docu-
menting the states of a system;

e modeling the behavior of states and relationships
among them, including information about hardware
interfaces and operation;

e capturing the mission objectives in detailed scenarios
motivated by operator intent;

e keeping track of system constraints and operating
rules; and

e describing the methods by which objectives will be
achieved.

For each of these design aspects, there is a simple but
strict structure within which it is defined: the state-
based control architecture (also known as the “Control
Diamond”, see Fig. 1).

The architecture has the following key features [1]:

e State is explicit. The full knowledge of the state of the
system under control is represented in a collection of
state variables. We discuss the representation of state
in more detail in Section 3.

e State estimation is separate from state control. Es-
timation and control are coupled only through state
variables. Keeping these two tasks separate promotes
objective assessment of system state, ensures consis-
tent use of state across the system, simplifies the de-
sign, promotes modularity, and facilitates implemen-
tation in software.

e Hardware adapters provide the sole interface between
the system under control and the control system. They
form the boundary of our state architecture, provide
all the measurement and command abstractions used
for control and estimation, and are responsible for
translating and managing raw hardware input and out-
put.

e Models are ubiquitous throughout the architecture.
Models are used both for execution (estimating and
controlling state) and higher-level planning (e.g., re-
source management). State Analysis requires that the
models be documented explicitly, in whatever form
is most convenient for the given application. In Sec-
tion 4, we describe our process for capturing these
models.

e The architecture emphasizes goal-directed closed-
loop operation. Instead of specifying desired be-
havior in terms of low-level open-loop commands,



Download English Version:

https://daneshyari.com/en/article/1717269

Download Persian Version:

https://daneshyari.com/article/1717269

Daneshyari.com


https://daneshyari.com/en/article/1717269
https://daneshyari.com/article/1717269
https://daneshyari.com

