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A pseudo-analytic approach is suggested to determine the optimal launching conditions for maximizing 
the altitude of a sounding rocket flying with a constant mass flow of propellant in a standard atmosphere. 
The one-dimensional rocket momentum equation including thrust, gravitational force, and aerodynamic 
drag is considered, for which it is impossible to obtain the analytic solutions since the governing equation 
is nonlinear. The piecewise pseudo-analytic solutions are obtained with a constant control parameter 
introduced to make the velocity integral in the governing equation be analytic. The rocket flight in 
the standard atmosphere is analyzed by dividing the entire range into small intervals where the drag 
parameter or the gravitational acceleration can be treated as a constant in each interval. The pseudo-
analytic approach gives precise predictions of the rocket velocity and the rocket altitude that agree well 
with the numerical ones. A characteristic equation exists and provides accurate predictions of the optimal 
mass flow rate for maximizing the altitude at burn-out state or at apogee.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Many countries use sounding rocket programs in an effort to 
develop technologies related to sounding rockets, since scientific 
studies employing such programs are simple, efficient, and inex-
pensive compared to those with a satellite [1–12]. Most scientific 
measurements, observations, or experiments for sounding rocket 
missions are carried out near apogee. This is the case because the 
low speed near apogee provides unique opportunities to explore or 
observe the surrounding space in a short time period. Furthermore, 
there are some important regions of space that are too close to 
the earth’s surface to be sampled by satellites; however, sounding 
rockets provide platforms for carrying out in-situ measurements in 
these regions [9]. Some microgravity environments [13,14] are car-
ried after burn-out state and some scramjet experiments [15,16]
are conducted during free-fall which provides a good hypersonic 
condition at a low cost. Therefore, the design target of a sounding 
rocket is the altitude at burn-out state or apogee. The rocket alti-
tude can change based on the ejection conditions of the propellant 
jet. Therefore, it is necessary to determine an optimal condition for 
maximizing the altitude for given launching conditions.

The Goddard problem of optimal thrust programming for max-
imizing the altitude of a rocket in vertical flight has been exten-
sively studied using variation methods, asymptotic approaches or 

E-mail address: lsh@mail.ulsan.ac.kr.

optimal control theories [17–20]. These are not based on the an-
alytic solution of the rocket momentum equation, since there is 
no general analytic solution due to the nonlinearity of the govern-
ing equation. There are also approximate solutions using the Tay-
lor series expansion, the perturbation method or the least square 
method [21], but they are complex and do not provide informa-
tion about the optimal conditions. An analytic exact solution of the 
rocket momentum equation including thrust, gravitational force 
and aerodynamic drag force exists only in a typical situation where 
the three forces are well balanced. A previous study [22] presented 
an analytic approach to obtain analytic solution and to determine 
the optimal conditions for the typical situations. This approach was 
extended to rocket flight in a standard atmosphere [23]. However 
the existence of an analytic solution requires the balance of the 
three forces and thus the typical control of the mass flow rate 
of propellant. Thus these analytic approaches have serious limita-
tions in real applications. For instance, most sounding rockets use 
a constant mass flow rate of propellant in which the rocket motion 
cannot be solved with an analytic approach. Hence, in the present 
study, a pseudo-analytic approach to obtain an approximate so-
lution and determine the optimal conditions for maximizing the 
altitude of a sounding rocket are suggested and verified.

We consider the motion of a sounding rocket launched in the 
vertical direction for simplicity. Then, the motion of a sounding 
rocket can be described using a one-dimensional momentum equa-
tion that includes thrust, gravitational force, and aerodynamic drag 
force. The rocket mass varies with time, and the aerodynamic drag 
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Nomenclature

F = thrust
G = ratio between inertia and drag
g = gravitational acceleration
h = altitude
J = pseudo drag parameter
K = drag parameter
M = Mach number
m = rocket mass
ṁ = rate of rocket mass change or mass flow rate of pro-

pellant jet
q = velocity parameter for rocket velocity
r = control parameter for rocket velocity
t = time
u = velocity of propellant jet
v = rocket vertical velocity

p = static pressure
T = temperature
γ = specific heats ratio
ρ = density
Ω = rocket mass ratio between total mass and dry-mass
ω = rocket mass ratio between adjacent intervals

Subscripts

a = ambient air
b = burn-out state
c = rocket combustor
e = jet condition at rocket nozzle exit
o = ground state
opt = optimal condition for maximizing altitude
s = stationary state (apogee)

is proportional to the square of the rocket velocity, which makes 
the governing equation nonlinear. Thus, we cannot obtain an ana-
lytic solution in a general form. We also consider the case where 
the mass flow rate of propellant is constant for which analytic so-
lutions of the rocket momentum equation do not exist. We cannot 
use the analytic approaches, but there is a possibility to extend 
the previous analytic approaches [22,23] to build a pseudo-analytic 
approach for finding solutions. The reason why we cannot obtain 
analytic solutions is that the governing differential equation cannot 
be integrated in an analytic way. However, if the governing equa-
tion is multiplied by a proper parameter, one side of the differen-
tial equation can be analytically integrated. On the other hand, the 
other side of the governing differential equation cannot be inte-
grated in an analytic way. A similar situation occurs when we deal 
with rocket flight in the standard atmosphere [24], where the air 
density dramatically changes with the altitude. Further, the gravi-
tational acceleration cannot be treated as a constant when rockets 
reach the upper atmosphere. Moreover, the aerodynamic drag coef-
ficient changes with the flight Mach number especially around the 
Mach number of unity. Hence, the aerodynamic drag is a variable 
that changes with the altitude or rocket velocity. A previous study 
[23] shows that the “divide-and-conquer” strategy might be a way 
to avoid these serious issues. Hence, we can exploit this strategy 
to solve the problem in the present study. If we divide the en-
tire flight range into intervals that are small enough, we can treat 
the following terms as constants in each interval: the parameter 
multiplied to both sides of the governing equation, the air den-
sity, the gravitational acceleration and the drag coefficient. We can 
then have piecewise pseudo-analytic solutions and also determine 
the optimal conditions at burn-out state or apogee.

The rocket model considered in the present study is the same 
one in the previous study [23] that is a simplified model based on 
the Korea Sounding Rocket Program (KSR II and III) [8]. KSR II is a 
solid propellant rocket with a total the weight of 2.0 ton, a diame-
ter of 0.42 m and a length of 11.0 m. KSR III is a liquid propellant 
rocket with a weight of 6.1 ton, a diameter of 1.0 m and a length 
of 13.5 m. In the present study, we consider the medium specifi-
cation between KSR II and KSR III.

In Section 2, the one-dimensional rocket equation in boost 
phase and coast phase are briefly described. Section 3.1 provides 
alternative approach to obtain a pseudo-analytic solution of the 
governing equation. Sections 3.2 and 3.3 show how to build the 
characteristic equations to obtain the optimal conditions for max-
imizing altitude at burn-out state and at apogee. Section 4 shows 
the procedure of the numerical discretization of the governing 
equation. Section 5 provides calculation conditions such as atmo-

sphere, aerodynamic drag coefficient and launching conditions. Re-
sults of calculations are discussed in Section 6.

2. One-dimensional rocket equation

2.1. Governing equation in boost phase

The motion of a rocket in boost phase climbing in the verti-
cal direction can be described with the following one-dimensional 
rocket equation including thrust and aerodynamic drag as follows 
[25,26]:

m
dv

dt
= F − mg − K v2, (2.1a)

F = ṁue + Ae(pe − pa), (2.1b)

K = S

2
Cdρa. (2.1c)

The mass flow rate ṁ is equal to the rate of the rocket mass change 
and has a negative sign. In the present study, we consider the cases 
with a constant mass flow rate of propellant.

ṁ = dm

dt
= const. (2.2a)

The mass of a rocket decreases with the mass flow of propellant.

m = mo +
t∫

o

ṁdt = mo + ṁt. (2.2b)

If we use the constant specific heats ratio, the mass flow rate 
through a supersonic nozzle is determined as follows:

ṁ =

√√√√γ

R

(
2

γ + 1

) γ +1
γ −1

Ath
pc√
Tc

. (2.2c)

The subscript th denotes the throat of a rocket nozzle.
The term Ae in equation (2.1b) is the cross-sectional area at the 

nozzle exit. For an adiabatic nozzle flow, the total enthalpy is con-
stant, and we can then assume that the jet velocity ue and the 
pressure at exit are constant. However, the ambient pressure de-
creases with the altitude and thus the second term of the thrust 
increases with the altitude. The jet velocity has a negative sign 
since its direction is opposite of the rocket velocity; thus, the 
thrust term ṁue has a positive sign.
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