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Wing deformation can improve the performance of flapping wing MAV. Although this can be achieved 
through passive wing deformation, it is not possible to tune the deformation easily to obtain maximum 
performance. With the advancement in smart materials, prescribed deformation to improve maximum 
performance is becoming more practical. In this study, we study different forms of deformation, including 
a unique single-sided deformation to improve the wing’s performance. This study extends the previous 
2D study to 3D, and investigates if the favorable results in the earlier study are also applicable in 3D. 
Results show that we can obtain improvements as much as 111% for thrust and 125% for efficiency 
through careful selection of parameters. Positive lift coefficient of up to 1.45 is also observed when non-
symmetrical single sided flexing is used. This study will be helpful in the design of future flapping wing 
MAV.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Wing flexibility in flapping micro aerial vehicles has been in-
vestigated in many ways [1–7] due to its potential to improve 
efficiency, lift and thrust. These investigations can in general be 
classified into two types: prescribed (active) flexibility [1,4,7], or 
fluid structure interaction (FSI) induced (passive) flexibility [2,3,5]. 
In the first scenario, Miao and Ho [1] used FLUENT to investigate 
the effect of chord-wise flexibility on the aerodynamic character-
istics for a flapping airfoil with various combinations of Reynolds 
number (Re) and reduced frequency (k). Results show the forma-
tion of leading edge vortex (LEV), with improvement in both the 
efficiency and thrust. Tay and Lim [4] extended the previous works 
by investigating additional factors such as flexing center location, 
standard two-sided flexing as well as a type of single-sided flex-
ing using their own in-house Navier–Stokes solver. Results show
that with the correct parameters, efficiency and thrust coefficient 
increase to as high as 0.76 and 3.57 respectively. The new single-
sided flexing also produces up to a lift coefficient of 4.61 for 
the S1020 airfoil. However, the study was performed only in 2D. 
Ghommem et al. [7] used the unsteady vortex lattice method to-
gether with a gradient-based optimizer to obtain optimized wing 
shapes that give maximum efficiency. It was also found that the 
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optimal wing shapes are highly dependent on the reduced fre-
quency.

The advantage of prescribed flexibility is that the amount of 
flexibility on the wing can be controlled at all times to achieve 
the highest possible efficiency, lift and thrust. Moreover, the pre-
scribed deformation will change depending on the mission objec-
tive, such as high payload or high speed mission through high lift 
or thrust configuration respectively. In comparison, passive flexi-
bility depends on the forces generated by the wing which in turn 
determines the amount of flexibility. Hence, when flow conditions 
change, it is difficult to predict in advance the amount of flexibil-
ity as well as their effect on the force output. Despite the clear 
advantage of prescribed flexibility, the means to achieve it is not 
so straightforward. However, with the advent of smart materials 
such as shape memory alloys [8] and dielectric elastomers [9], 
it is now possible to control the wing’s deformation much more 
easily. Currently, practical efficiency of the dielectric elastomers 
now ranges from 18 to 26%, with the possibility of reaching 60% 
through charge recovery [9].

In the paper by Tay and Lim [4], their 2D flapping wing simu-
lations show great improvements in the efficiency, lift and thrust 
with their prescribed symmetrical and non-symmetrical flexibility. 
However, their study is restricted to 2D only. In this study, we in-
tend to use similar flexibility strategies as used in their paper and 
extend them to 3D. The objective of the current paper is to im-
prove the performance of flapping MAV (FMAV) through prescribed 
flexibility. The Re is fixed at 5,000 since we are only interested in 
FMAV in this regime. Due to the large computational requirement 
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Nomenclature

a f flex degree either at the leading or trailing edge
alf /t f flex degree at the leading / trailing edge
c chord length
cl lift coefficient
ct thrust coefficient
dx minimum grid length
f non-dimensional flapping frequency
F output force from solver
f c forcing term
hlf deformed displacement at the leading edge
ht f deformed displacement at the trailing edge
p pressure
Pin power input
PI performance index
Re Reynolds number
S wing area

t time
t0 time the wing starts to flap
T period
Tr torque
u velocity vector
U∞ far field incoming velocity
x f c flexing center location
xrot center of pitch rotation
xt f distance from flexing center to point on wing
α0 pitching amplitude
βt f flex angle for the trailing edge
η propulsive efficiency
θ0 flapping amplitude
φ phase angle
ω angular velocity
ρ density of air

for 3D simulations in this study, it will be restricted to chordwise 
flexibility and the parameters involved are the flex location and the 
degree of flexibility. The bulk of the simulations will also be run at 
lower resolution, as will be explained later. The solver used is the 
3D immersed boundary method (IBM) [10] Navier–Stokes solver. 
The motivation for using IBM is that the simulations require large 
wing deformation, a situation which the IBM is very suited for. De-
tails about the methodology will be discussed in the later section. 
The result will be analyzed in terms of the thrust (ct ), lift (cl) co-
efficient, propulsive efficiency (η) and power input, while the flow 
itself will be visualized by means of pressure and Q criterion con-
tour plots.

2. Numerical method

2.1. Solver

The solver used in this study is the 3D IBM Navier–Stokes 
solver. The IBM approach is chosen because the wing undergoes 
large motion and deformation. If using an Arbitrary Lagrangian–
Eulerian (ALE) formulation, it may be difficult to maintain grid 
quality under this condition. In IBM, stationary Cartesian grids are 
used and the body of interest simply cuts through the grid. To 
simulate the presence of the body, the Navier–Stokes momentum 
equation is modified through the addition of a forcing term f c, as 
shown in Eqn. (1).

∂u

∂t
= −u · ∇u + 1

Re
∇2u − ∇p + f c, (1)

where u is the velocity vector, t is the time, p is the pres-
sure and Re is the Reynolds number. Equation (1) has been non-
dimensionalized using the far field incoming velocity (U∞) and 
root chord length (c) as the reference velocity and length. Accord-
ingly, the calculation of Re is based on U∞ and c.

There are many ways [10] to calculate the value of f c. We have 
chosen the discrete forcing approach based on a combination of 
the methods developed by Yang and Balaras [11], Kim et al. [12]
and Liao et al. [13], whereby f c is provisionally calculated ex-
plicitly using the 1st order forward Euler and 2nd order Adams 
Bashforth (AB2) schemes for the viscous and convective terms, re-
spectively, to give:

f cn+1 = u f − un


t
+

(
3

2
Cn − 1

2
Cn−1

)
− Dn + ∇pn, (2)

where C and D are spatial operators containing the convective 
∇ · uu and viscous ∇2u/ Re terms respectively.

To solve the modified non-dimensionalized incompressible 
Navier–Stokes equations (Eqn. (1) and Eqn. (3)), we use the finite 
volume fractional step method, which is based on an improved 
projection method [14].

∇ · u = 0 (3)

For the time integration scheme, the convective and viscous 
terms use the second order AB2 and Crank Nicolson (CN2) dis-
cretization respectively. The convective and viscous spatial deriva-
tives are discretized using the second order central differencing on 
a staggered grid. In this fractional step method, we first solve the 
momentum equation to obtain a non-divergence free velocity field. 
Using this non-divergence free velocity, we then solve the Poisson 
equation to obtain the pressure field, which in turn updates the ve-
locity to be divergence free. The momentum and Poisson equations 
are solved using the open source linear equation solvers PETSc [15]
and HYPRE [16] respectively. No turbulence model has been added 
to the solver due to the relatively low Re used in the simulations.

2.2. Force and power calculation

Because the body is now not aligned with the grid, the force co-
efficients on the body are calculated using the forcing term f cn+1

obtained earlier [12]:

Fi = −
∫

solid

f cn+1
i dV +

∫
solid

(
∂ui

∂t
+ ∂uiu j

∂x j

)
dV , (4)

where V is the volume of the wing.
In this study, we assume that the forces Fi obtained are equiv-

alent to the 3D force coefficients ct(
Ft

0.5ρU 2∞ S
) and cl(

Fl
0.5ρU 2∞ S

) for 
simplicity since comparisons are only performed within the study. 
Power input for the flapping is calculated based on the angular ve-
locity of the wing and the torque it produces. Torque (Tr) is given 
by

Tr =
∫

(r × F )dV , (5)

where r and F are the distance of the point from the rotating axis 
and the output forces respectively. All the grid cells’ torques within 
the volume of the wing are summed up to give the total torque Tr.

Power input is then given by:

Pin = −Tr · ω, (6)

where ω is the angular velocity of the wing.
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