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The controllability analysis for airplane flight dynamics is very crucial in upset/loss-of-control situations. 
Conventional airplanes are normally equipped with so redundant control authority. That is, an airplane 
might experience a loss of one or more control surfaces and remain controllable. As such, the aim of 
this paper is to investigate common upset situations and to explore the limits of controllability using 
linear analysis tools with emphasis on analysis of Thrust-only Flight Control Systems (TFCSs) where all 
the hydraulic systems are lost. Based on those analyses, the necessity of nonlinear controllability analysis 
for such situations is discussed.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Control loss of an airplane, known in literature as loss-of-
control, is a serious problem whose repercussions can be catas-
trophic. Luckily, conventional airplanes may still be controllable 
if one or more control surfaces fail. For example, if an airplane 
lost all of its control surfaces due to hydraulic failure, it may still 
be controllable by manipulating the engines thrust forces. There 
are two common incidents in history that support such a fact. In 
1989, the United Airlines Flight 232 DC-10 aircraft lost flight con-
trol surfaces due to hydraulic pressure loss because of a failure 
in its tail-mounted engine. However, the crew managed to con-
trol the airplane until they reached an airport. Nevertheless, the 
aircraft lost balance just before touchdown leading to a wing-tip 
crash into the run way, which in turn, led to the aircraft break-
ing apart. But 185 people survived out of the 296 on board. The 
2003 DHL A300-B4 aircraft incident is another example. The air-
craft was hit by a ground-to-air missile during initial climb right 
after takeoff from Baghdad airport. As such, all hydraulics were lost 
within few seconds. However, the crew managed to land the air-
plane safely using only thrust controls. Of course, there are other 
examples of flight control failures where the crew could not avoid 
the worst case scenario such as the 1974 Turkish Airlines Flight 
981. The DC-10 aircraft lost the cargo door, which leads to a dam-
age in the control cables. The aircraft crashed a minute later and 
none of the 346 people on board survived.
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The above incidents among others invoked design and analysis 
of a thrust-only flight control system (TFCS) or a propulsion con-
trolled aircraft (PCA). These systems have been investigated in the 
1990s by Burcham et al. [5,6] and Tucker [20] at NASA Dryden 
Flight Research Center. They developed a computer-assisted engine 
control system, implemented and tested it on the F-15 fighter air-
craft and the MD-11 transport aircraft. In his study of the 2003 
DHL A300-B4 aircraft incident, Lemaignan [13] analyzed the appli-
cability of TFCSs. More recently, Yamasaki et al. [22], at Mitsubishi 
Heavy Industries, developed a TFCS system for the Boeing 747-400 
and validated it by testing in a domed simulator.

On the other hand, Wilborn and Foster [21], at Boeing Com-
pany and NASA Langley Research Center, presented a quantitative 
measures for loss-of-control in commercial transport aircraft. They 
presented five envelopes relating to airplane flight dynamics, aero-
dynamics, structural integrity, and flight control use that can reli-
ably identify key Loss-of-control characteristics. Also, Kwatny et al. 
[12] presented a nonlinear analysis for aircraft loss-of-control. They 
examined the ability to regulate an aircraft around stall points with 
emphasis on impaired aircraft and presented some examples using 
NASA’s generic transport model.

The objective of this paper is to formulate the airplane loss of 
control (LOC) into a controllability framework. It is understandable 
that controllability of a linearized model is not necessary. That 
is there exists a class of systems that are linearly uncontrollable 
but nonlinearly controllable, see for example Sec. 3.1 in Ref. [17]. 
However, the linear analysis should be performed first because of 
its sufficiency. Then nonlinear analysis should be employed in the 
cases where the linear analysis fails. Therefore, the current effort 
is to perform linear controllability analysis for some LOC cases 
(e.g., no elevator) and identify situations where nonlinear analysis 
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is required. A successive effort will be to discuss nonlinear control-
lability and apply it to these situations.

In this work, a linear decoupled six-degrees-of-freedom flight 
dynamic model is considered. Controllability of the linearized 
model about the cruise equilibrium is assessed at no-elevator, 
no-aileron, no-rudder, and no-thrust situations. In particular, the 
landing-approach problem using TFCS is analyzed. Also, the con-
cerns raised by Lemaignan [13] and Nguyen et al. [16] are ad-
dressed. Finally, LOC situations that necessitate nonlinear control-
lability analysis are provided for a successive effort.

2. Linear controllability analysis

Controllability is defined as the ability to steer a given system 
from some configuration into another configuration in finite time. 
A linear time-invariant (LTI) system is written in the form

ẋ(t) = Ax(t) + Bu(t) (1)

where x is the state vector (n × 1), u is the control input vector 
(m × 1), A is the state matrix (n × n), and B is the input matrix 
(n × m). A necessary and sufficient condition for the controllability 
of the system (1) is that the (n × nm) controllability matrix

C = [
B A B A2 B .... An−1 B

]
(2)

to be of full rank (i.e. rank(C) = n) which is often denoted by 
Kalman rank condition [18].

Luckily, controllability of linear systems is constructive. That is, 
if the matrix C is of full rank, then the following relation provides 
a control input history that steers the system (1) from x0 at t0 to 
x1 at t1 [3, pp. 74–77]

u(t) = −B ′ �′(t0, t) W −1(t0, t1)
(
x0 − �(t0, t1) x1

)

W (t0, t1) =
t1∫

t0

�(t0, t) B B ′ �′(t0, t) dt
(3)

where (.)′ denotes the transpose, � is the state transition matrix 
which is defined as �(t0, t) = e A(t0−t) . It should be noted that the 
control law (3) minimizes the integral 

∫ t1
t0

||u(t)||2dt of control en-
ergy needed for steering.

On the other hand, for nonlinear, control-affine system in the 
form

ẋ = f (x) +
m∑

i=1

gi(x)ui (4)

where f (x) is the drift vector field (uncontrolled dynamics) and 
gi(x) is the control input vector field associated with the control 
input ui . Assume, without loss of generality, that x0 is an equi-
librium point (i.e. f (x0) = 0). A sufficient condition for the local 
controllability of the system (4) at x0 is that the linearization about 
x0, written as

�ẋ =
[

∂ f

∂x

] ∣∣∣∣
x0

�x +
m∑

i=1

gi(x0)ui (5)

to be controllable. That is, the controllability matrix

C =
[

g1(x0), ..., gm(x0),

[
∂ f

∂x

] ∣∣∣∣
x0

g1(x0), ...,

[
∂ f

∂x

] ∣∣∣∣
x0

gm(x0), ...

...,

[
∂ f

∂x

]n−1 ∣∣∣∣
x0

g1(x0), ...,

[
∂ f

∂x

]n−1 ∣∣∣∣
x0

gm(x0)

]
(6)

to be of full row rank [17]. It is noteworthy to mention that 
this controllability matrix of the linearized system (5) is the ana-
logue of the controllability matrix of the linear system (1), where 

[
∂ f
∂x

] ∣∣∣∣
x0

is the Jacobian matrix of the vector field f (x) eval-

uated at x0, which is equivalent to the matrix A in (1) and 
[g1(x0), ..., gm(x0)] is equivalent to the matrix B in (1).

3. Controllability analysis of linearized flight dynamics

In this section, the controllability analysis of the linearized sys-
tem is performed. Since this linearization is performed at the 
cruise flight condition; i.e., the lateral velocity v = 0 as well as 
the rolling and yawing angular velocities p = r = 0, then the lon-
gitudinal and lateral dynamics are decoupled and their respective 
reduced-order models can be studied separately.

3.1. Longitudinal 4 × 4 flight dynamics model

The longitudinal 4 × 4 flight dynamics model for a rigid aircraft 
can be written as follows [15]⎡
⎢⎢⎣

u̇
ẇ
q̇
θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Xu Xw 0 −g cos θ0
Zu Z w U0 −g sin θ0
Mu Mw Mq −gMw sin θ0

0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

u
w
q
θ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

Xδe Xδt

Zδe 0
Mδe Mδt

0 0

⎤
⎥⎥⎦

[
δe

δt

]
(7)

where u and w are the forward and normal velocity perturba-
tions of the airplane center of gravity from the equilibrium state 
along the longitudinal and normal body axes, respectively. The 
body pitching angle and angular velocity are θ and q, respectively. 
U0 and θ0 are the cruise forward speed and pitching angle, re-
spectively and g is the gravitational acceleration. The longitudinal 
control inputs are the elevator deflection δe and thrust control in-
put δt . The parameters Xu , Xw , Zu , Z w , Mu , Mw , Mq , Xδe , Xδt , 
Zδe , Mδe , and Mδt are stability and control derivatives at the cruise 
condition.

The rank of the controllability matrix for this system is calcu-
lated using Eq. (2) and found to be four which ensures linear (and 
hence nonlinear) controllability for the system at hand. In case of 
a failure in the elevator system or loss of regulation in the en-
gine system, the control input matrix B becomes [Xδt 0 Mδt 0]′ or 
[Xδe Zδe Mδe 0]′ , respectively. However, in either case, the rank of 
the controllability matrix is found to be also four, which means 
that the airplane remains controllable even if the elevator or en-
gine fails.

In order to verify the existence of a steering control input his-
tory in the case of elevator or engine loss, we use the longitudinal 
flight dynamic characteristics of the DELTA aircraft (a paradigm 
model for a very large, four-engined, cargo jet aircraft) from [14, 
pp. 561–563], at the flight condition (sea-level cruising at U0 =
75 m/s and θ0 = α0 = 2.7◦). It is preferred over a particular air-
plane type (e.g., B747, A320) for its general representation for a 
whole class of airplanes. However, it should be noted that the 
presented analysis is transferable to any class. The stability and 
control derivatives of such an airplane at the stated flight condi-
tion are given as:

m = 300,000 kg, Xu = −0.02, Xw = 0.1,

Zu = −0.23, Z w = −0.634,

Mu = −2.55 ∗ 10−5, Mw = −0.005, Mq = −0.61,

Xδe = 0.14, Zδe = −2.9,

Mδe = −0.64, Xδt = 1.56, Mδt = 0.0054.
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