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In a recent work by the authors the concept of Fading Gaussian Deterministic filter was investigated. The 
algorithm is based on a set of equations derived from the minimization of a cost function where earlier 
data are progressively de-weighted by a fading factor. In such a way, the estimation was proved to be 
less prone to problem unknowns. A tuning procedure was proposed that allows the resulting globally 
best estimator to evaluate the covariance of an effective measurement noise and the true estimation 
error, without any a-priori assumption. In the present paper, a general formulation is derived where 
the observed system is influenced by a control input. Also, a proof is derived for the proposed tuning 
criterion, which is shown to provide, under certain assumptions, the fading factor that best dampens the 
modeling errors with respect to measurement noise. The validity of the proposed approach is investigated 
by means of both numerical simulations and an experimental campaign, where height estimation is 
performed by fusing information from MEMS accelerometers and a barometric altimeter.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper presents an estimation filter that features online 
tuning capabilities and its application to a data-fusion problem for 
height estimation. The algorithm is based on a recursive two-step 
set of equations known as Fading Gaussian Deterministic (FGD) 
filter, recently investigated by the authors in Ref. [1]. In such a 
framework, the filter was shown to be “optimal” because the gain 
matrix is computed through the formal minimization of a cost 
function, with no other assumption. In particular, earlier data are 
progressively de-weighted by a fading (or “forgetting”) factor, in 
order to make the estimation less prone to unknown external 
disturbances and/or model uncertainties and/or non-modeled dy-
namics, regardless of their nature (deterministic or stochastic). The 
introduction of the fading factor and the elimination of the so-
called process noise covariance matrix Q make the difference with 
respect to a classical Kalman-like estimation process [2]. The ap-
proach was first developed by Norman Morrison in Ref. [3] and 
preliminarily elaborated in Ref. [4]. A similar concept was also in-
vestigated within the digital processing community in Refs. [5–7]. 
More recently, the Morrison filter was applied, with both non-
recursive and recursive formulations, to a nonlinear tracking prob-
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lem, where Levenberg–Marquardt methods were incorporated for 
improved convergence [8].

The main contribution provided in Ref. [1] consisted in a crite-
rion for filter tuning, in order to minimize the estimation error, by 
selecting the best estimator in an ensemble of filters where only 
the fading factor value is varied. Once the filter is tuned, an ef-
fective measurement noise covariance R is directly estimated from 
the data (not as an a-priori assumption) and, as a by-product, the 
true covariance of the estimation error P is evaluated.

In the present paper, the recursive formulation introduced in 
Ref. [1] is extended to the general case where the system is in-
fluenced by a control input. In addition to the goodness-of-fit in-
terpretation given in Ref. [1], a formal justification is also derived 
for the proposed tuning criterion, which is shown to provide the 
fading factor that best dampens the modeling errors with respect 
to the measurement noise. The effectiveness of the proposed ap-
proach and its ability to identify a globally optimum filter (within 
its own class) is investigated by means of both numerical simu-
lations and an experimental campaign, where it is stressed that 
the proposed proof to the tuning technique allows quantifying the 
degree of knowledge of system dynamics. In particular, the algo-
rithm is implemented in a test case relative to height estimation 
by fusing information from MEMS accelerometers and a baromet-
ric altimeter. A comparison is provided between the FGD algorithm 
and a simple method based on the so-called complementary filter-
ing [9]. A simulation scenario is finally described where, in order 
to outline an evolving dynamic environment, the modeling accu-
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Nomenclature

E−
k , Ek computed predicted and corrected error matrices

h count in time series
Hk observation matrix
Iq q × q unit matrix
ik innovation vector
k count in all time series
m size of system state vector
Mk Morrison gain matrix
n size of observation vector
P k true covariance matrix of error ek

P−
k true covariance matrix of error e−

k

P̃ k estimated covariance matrix of error ek

Q k system noise covariance matrix
R, R∗, R̃ true, assumed, and estimated measurement noise co-

variance matrices

uk control input vector
vk, wk true measurement noise and process noise vectors
xk, x−

k , x̃k true state vector, predicted and corrected state vector 
estimates

Greek symbols

β fading scalar factor
χ2

k , ξ2
k tuning and scaling statistics

εk, ε̃k general and minimized cost functions
�k system state transition matrix
�k control input model
ρk scalar normalized squared residual
θ, θ̃ true and estimated scaling factors between R and R∗

Subscripts and superscripts

T tuning value

racy is artificially corrupted, with the consequent deterioration of 
the goodness-of-fit and the necessity to increase the filter’s fading 
effect.

2. Basic specifications of the FGD filter

Suppose that, at time k, there is some true state vector xk
with dimension m which propagates approximately according to 
xk+1 = �k xk +�k uk , where �k is the state transition matrix, uk is 
a known input vector with dimension l, and �k is the control-input 
model. The observation zk with dimension n approximately tracks 
this process as in zk = Hk xk , where Hk is the observation matrix.

Given the time series of data z0, z1, z2, . . . , zk , the aim is to 
compute estimates in a time series to the state vector, namely 
x̃0, x̃1, x̃2, . . . , x̃k . Measurements are corrupted by a noise vk with 
variance R [10], as in

zk = Hk xk + vk (1)

Let R∗ be an assigned weighting matrix and β ∈ (0, 1) be the fad-
ing factor. Consider the following cost function [3]:

εk =
k∑

h=0

(
zk−h − Hk−h x̃k−h/k

)T R∗−1 (zk−h − Hk−h x̃k−h/k
)
βh

(2)

where

x̃k−h/k =

⎧⎪⎨
⎪⎩

x̃k if h = 0(
h∏

j=1
�−1

k− j

)
x̃k − γ k−h/k if h > 0

(3)

and

γ k−h/k =
h−1∑
j=0

⎛
⎝ j∏

m=0

�−1
k−h+m

⎞
⎠�k−h+ j uk−h+ j (4)

provided Eq. (4) is defined for h > 0. The cost function defined 
by Eqs. (2), (3), and (4) is chosen to be minimized by the best 
choice of the estimated state vector, x̃k . Note that this last term 
appears in any term of the sum in Eq. (2) through x̃k−h/k , which 
is the back-projection of the current estimate, given all data and 
input history up to k. By minimizing the cost function, the best fit 
between the current estimate x̃k and all previous available data is 
thus sought. Turning the estimation problem into a curve fitting 

exercise thus allows, thanks to elementary statistical analysis, the 
true error covariance P k to be directly estimated from the data 
without prior knowledge of R (which is also estimated, as part of 
the process).

The least squares solution to x̃k is found through differentia-
tion of Eq. (2) with respect to x̃k . The derivation is reported in 
Appendix A for a time-invariant scenario. Note, however, that the 
time-variant case reported below can be obtained by a similar pro-
cedure, at the cost of a more cumbersome notation. Given Hk , �k , 
and β:

1. Input:

zk, x̃−
k , E−

k

2. Compute:

x̃k = x̃−
k + Mk

(
zk − Hk x̃−

k

)
(5)

where
• standard formulation

Mk = E−
k H T

k

(
Hk E−

k H T
k + R∗)−1

(6)

Ek = (Im − Mk Hk) E−
k (7)

• alternative formulation

E−1
k = H T

k R∗−1 Hk + (E−
k

)−1
(8)

Mk = Ek H T
k R∗−1 (9)

3. Project ahead:

x̃−
k+1 = �k x̃k + �kuk (10)

E−
k+1 = �k Ek�

T
k

β
(11)

The above formulation matches the Kalman algorithm except for 
Eq. (11), where the fading factor β appears in place of the process 
noise matrix Q . On the one hand, the effect of β was initially 
specified in Eq. (2) in order to model an exponential growth of the 
residuals when back-propagating the current estimate in the past. 
On the other hand, it is retrieved as an inflation coefficient in the 
forward propagation of the filter error covariance.
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