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As thin plates have relatively big thickness ratios, their elastic buckling usually occurs before the yielding. 
From beginning of the previous century, many researchers have considered various in-plane loading states 
on thin plates and have strived to find simple equations to predict the buckling load. However, there are 
few valid equations with negligible errors for a thin plate, when it is under all of in-plane loads. In this 
paper, using energy method, an applicable formula is suggested for a simply supported rectangular plate, 
which is under biaxial and shear loads. The biaxial loads can be applied in the compressive/compressive, 
compressive/tensile, and tensile/tensile states on the plate. Generally, 15 129 examples are considered 
for this problem. The aspect ratio of plates varies from 1 to 5 and for each case and with the known 
load ratios, the plate buckling coefficient is calculated. Then, by using the regression techniques and 
interpolation, it is tried to estimate a simple equation with minimum error to predict the buckling load. 
The confirmed results show that for the biaxial compression and shear state, the maximum error is 8% 
and for the compression–tension–shear and biaxial tension and shear states, it increases until 20%.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Thin-plated structures are widely used in various engineering 
industries such as building, bridge, aerospace, marine, shipbuilding 
and so on. Thin plates usually have thickness ratio between 10 and 
100 and in practical purposes they mostly buckle under in-plane 
axial and shear loading before yielding. Because they have the 
post-buckling behavior, prediction of the buckling load by an ap-
plicable equation with minimum error is very important for such 
structures.

In many years, the valuable efforts have been performed to find 
concise equations for the buckling load of flat plates under the 
various loading types and boundary conditions [1–3]. There are 
several methods to predict buckling loads of such plates. The older 
methods have been applied from near the end of the 19th century 
[1] that mostly included the method of integration of the differen-
tial equation and also, the energy method. Recently, the numerical 
methods have been considered as useful tools for the complicated 
problems. Generally, the exact solutions can be developed, when 
the plate is under uniformly distributed compressive in one direc-
tion or two perpendicular directions. For the latter state, Lebove 

* Corresponding author. Fax: +988132221977.
E-mail addresses: a.jahanpour@malayeru.ac.ir (A. Jahanpour), 

farhadroozbahani65@gmail.com (F. Roozbahani).

[4] showed that one of half-waves in the buckled plate is always 
unit; but the other one can be achieved by an explicit solution.

In this way, numerous researchers have investigated other 
states of loadings and boundary conditions through the years. Us-
ing energy method, van der Neut [5] obtained the buckling load of 
a simply supported plate under a half-sine load distribution on the 
opposite sides and later Benoy [6] investigated this problem for a 
parabolic distribution. He considered four boundary conditions of 
plate: (i) ends and sides simply supported, (ii) ends clamped, sides 
SS, (iii) ends SS, sides C, and (iv) ends and sides C. Also, the load-
ing was expressed in terms of the stresses at the panel edges and 
center. Benoy compared the obtained results with those of van 
der Neut. Later, Bert et al. [7] claimed that two previous works 
were based on an incorrect in-plane stress distribution. They used 
Galerkin solution to remove the existing deficiencies in the previ-
ous works, especially for a sinusoidal stress distribution and then, 
achieved more accurate results for the buckling load. They con-
cluded that their analysis shows the buckling loads at higher plate 
aspect ratio increase relative to those obtained in the literature.

Bank and Yin [8] considered buckling of an orthotropic plate, 
simply supported on its loaded edges and free and rotationally re-
strained on its unloaded edges. Uniform uniaxial compression was 
applied on the loaded edges and the method of integration of the 
differential equation (exact solution) for the deflected plate was 
used. In this study, the effect of orthotropic properties of the plate 
material, the plate aspect ratio, the rotational restraint of the one 
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loaded edge and the buckle half-wavelength was discussed. They 
showed that in the case of a plate with a free edge, the Pois-
son ratio appears explicitly in the boundary conditions. Finally, the 
buckling curves were presented for the results of parametric stud-
ies as well as typical composite materials.

Kang and Leissa [9] presented an exact solution for the buckling 
and free vibration of rectangular plates having two opposite edges 
simply supported, each subjected to an in-plane moment, with the 
other two edges being free. The exact solution was applied in term 
of an infinite power series, so that sufficient number of terms of 
the series must be taken to obtain accurate numerical results. The 
results showed that the critical buckling moment always occurs for 
a mode having one half-wave in the direction of loading and also, 
the buckling and frequency parameters depend upon the Poisson 
ratio. Furthermore, the used approach may be applied equally well 
to plates having other continuous boundary condition along their 
unloaded edges.

Elangovan and Prinsze [10] arranged a finite element shear 
buckling analysis with NASTRAN for flat rectangular plates with 
two free opposite edges and the other two edges with different 
boundary conditions. In some curves, the shear buckling coeffi-
cient which obtained for the boundary conditions was compared 
and emphasized that the in-plane flexibility of the supports is an 
important parameter in the structural design.

In recent decades, the numerical methods have been extended 
to increase the efficiency and ability. Sherbourne and Pandey [11]
used differential quadrature method (DQM) for solving directly the 
partial differential equation governing the problem with prescribed 
boundary conditions. This method suggests polynomial approxi-
mations of partial derivatives of a function. They employed DQM 
to compare some examples and results with available standard 
solutions. Their experience showed that compactness and compu-
tational economy of the DQ model are praiseworthy. Later, Civalek 
[12] compared the methods of differential quadrature (DQ) and 
harmonic differential quadrature (HDQ). He used these methods 
for various analysis of thin isotropic plates and columns. Unlike DQ 
that uses the polynomial functions, HDQ uses harmonic or trigono-
metric functions as the test functions. Civalek applied both of 
methods on some examples such as elastic columns, circular, rect-
angular, skew, trapezoidal, eccentric sectorial, and square plates. 
He concluded that in the numerical examples, the results obtained 
with HDQ method are more accurate than the values calculated 
by using finite elements and finite differences and needs less grid 
points than the DQ method.

Liew et al. [13] formulated the radial point interpolation 
method (RPIM) for the buckling analysis of non-uniformly loaded 
thick plate. The RPIM is a mesh-free method, so that the prob-
lem domain is not divided into sub-domain to approximate the 
displacement (unlike the FEM). The buckling loads of the circular, 
trapezoidal and skew plates were calculated and compared with 
FEM. Furthermore, Civalek et al. [14] used discrete singular convo-
lution (DSC) for buckling and free vibration analyses of rectangular 
plates subjected various in-plane compressive loads and with dif-
ferent boundary conditions. The mathematical foundation of this 
method is the theory of distributions and wavelet analysis. The 
obtained results were compared with those of other numerical 
methods.

Beyond the described investigations, many studies can be found 
that have been presented for buckling of thin plates under combi-
nations of in-plane loads and various boundary conditions. Using 
energy method, McKenzie [15] gave an analysis of the buckling of 
a rectangular plate of arbitrary aspect ratio under combination of 
biaxial compression, bending and shear. In this investigation, the 
pair of sides of the plate to which bending is applied are assumed 
to be simply supported, while the other two sides are supported 
by edges members of arbitrary torsional and flexural stiffnesses. 

McKenzie generated some interaction curves for different aspect 
ratios and load ratios.

Liu and Pavlovic [16] broke-down external loads (direct, shear 
and bending loads) into four parts in the symmetrical and anti-
symmetrical forms. For a simply supported rectangular plate and 
using principle of super position, the Ritz energy technique was 
used to compute the buckling coefficient of the plate. They em-
phasized that the proposed approach based on formal plane stress 
elasticity solution enables the true distribution in any plate to be 
obtain irrespective of the complexity and/or arbitrariness of ap-
plied forced on any edges.

However, some equations have been approximately developed 
among pure shear, pure bending, combined shear and longitudinal 
compression, shear and bending load [17–19]. Although a few in-
vestigations can be found for the buckling behavior of plates under 
biaxial and shear loads, Wagner [20–22] established two formu-
las to calculate the critical shear stress of simply supported and 
clamped plates with given values of biaxial stresses:(
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In above equation, σx and σy are axial stresses in x- and 
y-directions respectively. They have negative values when are ten-
sile. To use this equation, the plate aspect ratio must be very large 
[22]. As a result, Eqs. (1) could not be used for usual aspect ratio 
of plates (1 < α < 5).

Chen et al. [23] estimated a concise formula for the critical 
buckling stresses of an elastic plate under biaxial compression and 
shear (Eq. (2)). They considered the plate aspect ratio between 1 
and 5.
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In Eq. (2), σx is compressive stress in x-direction; σx,cr is uniax-
ial compressive buckling stress in x-direction; σy is compressive 
stress in y-direction; σy,cr is uniaxial compressive buckling stress 
in y-direction; τcrm is modified shear buckling stress of the plate 
and τcr is pure shear buckling stress of the plate.

Chen et al. emphasized that the maximum error of the critical 
stress relationship in above equation is found to be less than 0.5% 
for 1 ≤ α <

√
2, 5% for 

√
2 ≤ α < 2, and 10% for 2 ≤ α < 5 [23]. 

Eq. (2) shows that for α >
√

2, without shear load (τcrm = 0), 
γ = α. As a result, Eq. (2) is converted to σx

σx,cr
+ (

σy
σy,cr

)α = 1. It 
can be shown that for the biaxial loaded plates, power of both of 
the terms must be unit [1,22], whereas here α >

√
2.

In addition, according to Von-Mises criteria, DNV-RP-C201 has 
an equation which can be used to obtain inelastic buckling of un-
stiffened plate under biaxial compression and shear loads [24].
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