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Kalman filter based algorithms aim at providing accurate estimate of the state parameters which is 
indirectly governed by the accuracy of the sensor measurement and noise parameters fed to the system 
model. Multiple Model Adaptive Estimation (MMAE) is one of the adaptive techniques which tries to 
reduce the dependency of Kalman filter on the noise parameters fed to the system. The main goal of this 
work is to improve state estimation by incorporating window size as one of the unknown parameters in 
MMAE framework, referred to as Window based MMAE (WMMAE). The proposed scheme intertwines the 
concepts of Innovation Adaptive Estimation (IAE) and MMAE in one structure and the state estimation for 
each model is implemented by IAE. Simulation results prove the efficacy of WMMAE scheme as compared 
to MMAE and its other variants.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Inertial navigation system (INS) is one of the main building 
blocks of today’s guidance and control systems in most of the ve-
hicles determining its attitude and positional information [1]. It 
uses different sensors such as accelerometer, gyroscope, and mag-
netometer [2] for obtaining angular orientation and position of the 
moving object with respect to an inertial frame of reference [3]. 
These navigation systems require optimal state estimation schemes 
for reducing the effect of time varying noise embedded in the sen-
sor output.

Kalman filtering is one of the most widely used techniques for 
state estimation and it has undergone several improvements over 
time since its introduction in 1960 by R.E. Kalman [4]. The most 
needed improvement to the simple Kalman filter was a non-linear 
extension of it that is popularly known as Extended Kalman Filter 
(EKF) [5]. EKF uses Taylor series [6] approximation for applying 
Kalman filter to nonlinear systems. Though the EKF framework 
performs better than other filtering techniques, a major limitation 
with it is the requirement of an accurate noise parameter esti-
mate to be provided a priori. Inertial sensors being prone to time 
varying bias and drift leads to a change in these noise parameters 
with time. Thus, a constant noise parameter assumption over the 
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complete flight duration is not rational and leads to less accurate 
state estimation [7]. This, thus necessitated researchers to develop 
schemes by which the noise parameters can be tuned adaptively.

The Kalman filter scheme which changes these noise parame-
ters in-run is referred to as adaptive Kalman filter (AKF). The AKF 
scheme can be classified into two types depending on the method 
used for adaptation, i.e., a) Innovation Adaptive Estimation (IAE) 
[8,9], and b) Multiple Model Adaptive Estimation (MMAE) [10–13]. 
IAE is an adaptive filtering scheme which uses single EKF with an 
inbuilt framework to adapt process and measurement noise covari-
ance parameters (Q and R) on the basis of the innovation or the 
residual sequence. The MMAE methodology instead uses a bank of 
Kalman filters running in parallel to provide a weighted sum of 
each individual KF with different α, wherein α is a set of all un-
known parameters which varies from one filter to the other. This 
scheme has received a revived interest among researchers with in-
creasing speed of computational platform over time, which was 
a bottleneck for implementation of MMAE in the past. Recently, 
MMAE has found application in different areas [14,15], such as, 
target tracking [16], fault diagnosis [17,18], bias calibration [19], 
and navigation [20]. Though the IAE scheme is computationally 
much simpler than MMAE, it requires the knowledge of system 
model accurately and an appropriate window size for computing 
covariance parameter [21]. With unique ability of MMAE to handle 
parametric uncertainties and non-specific requirement of stochas-
tic parameters in system model [22–24], there have been several 
advancements towards the MMAE framework in the recent past. 
For a system model known with high confidence, Q and R are the 
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two main unknown system parameters considered in MMAE for-
mulation [9]. The MMAE framework uses a stack of Kalman filters 
which have individual estimate at each epoch and resultant output 
is a weighted sum of each individual filter’s estimate [20,25–27]. 
MMAE works better especially in two conditions, one in which the 
system model is not known completely [15] and the other in which 
one needs to select the best model out of given models [25]. The 
main aim of this work is to devise an MMAE scheme with IAE as 
the state estimation block instead of EKF and including window 
size as an additional unknown parameter.

The MMAE scheme can be broadly classified in three different 
forms: a) Classical MMAE [26], b) Interactive Multiple Model (IMM) 
[28] and c) MMAE with variable structure [29]. Several modifica-
tions have been tried in recent past to improve the existing MMAE 
[24,30] framework such as β-stripping, probability lower bound, 
scalar penalty increase, probability smoothing, increased residual 
propagation [31] and generalized residual MMAE [32]. The expo-
nential term (β) in the MMAE equation plays a very important role 
in the probability calculation. If two filters have a similar perfor-
mance in the filter stack, MMAE assigns higher probability to the 
filter whose β value is relatively larger. This probability eventually 
tends to 1, and is inconsistent with the actual probability value for 
each filter, leading to undesirable performance [30]. Maybeck and
Stevens [33] and Jia and Xu [34] removed this β term from proba-
bility calculation and showed an improvement in the performance 
of the classical MMAE scheme. On an another direction towards 
improving MMAE, the magnitude of scalar penalty value 1/2 in the 
exponential term was proposed to be increased to a larger value, 
resulting in a faster changing probability values [31]. However, this 
fast changing probability value leads to excessive competition and 
needs to be reduced appropriately [20]. Li et al. in [20] proposed a 
time varying penalty value with an exponential decay to improve 
the filter performance.

Towards other improvements over MMAE, Maybeck introduced 
the concept of limiting the likelihood value required for the weight 
calculation to ε whenever it reaches zero. This avoids the problem 
of zero weighting factor for any filter, keeping all the filters active 
in the MMAE loop [35]. The tuning of MMAE filtering scheme has 
been discussed in [35] wherein the Q and R noise parameters are 
changed manually, thus affecting the filter’s performance signifi-
cantly. Maybeck and Hanlon introduced the scheme of increased 
residual propagation in which few update steps of Kalman filter-
ing is skipped after each propagation, reducing system’s compu-
tational complexity with marginal loss in filter performance [30]. 
Another modification proposed in the literature includes the con-
cept of generalized residual MMAE wherein the innovation and 
post fit residual are combined to form a generalized residual for 
calculating filter’s weight [32,36]. Classical MMAE is also improved 
by using unscented Kalman filter instead of EKF in the filter bank 
[37,38]. Recently, Xiong et al. have proposed to incorporate robust 
Kalman filter for the state estimation of each model and shown to 
provide better convergence as compared to traditional state esti-
mation schemes [15].

Another generation of MMAE, i.e., Interacting Multiple Model 
Filter [39,40] is a computationally efficient filter which takes the 
jumps in the system under consideration. This scheme consists of 
three major steps: interaction (mixing), filtering and combination. 
In each time step, the initial conditions for certain model-matched 
filter are obtained by mixing the state estimates produced by all 
filters from the previous time step [41]. This approach provides 
an integrated framework for fault detection, diagnosis, and state 
estimation [42] and has a relatively low computational load [43].

Though these modifications have led to improvements in the 
core MMAE structure, they do not incorporate the adaptation of 
Q and R values. The MMAE has limited options for Q and R in 
its filter bank and may not provide very accurate state estimate 

for MEMS based system where these values change with time. The 
IAE scheme has a limitation in terms of the appropriate window 
size selection for the calculation of noise covariance. The win-
dow size used for computing noise covariance in IAE requires a 
methodology for adapting its window length over time. It is thus 
hypothesized here to develop a scheme by which MMAE can pro-
vide a weighted combination of IAE with different window sizes in 
its core structure, taking advantage of both the IAE and the MMAE 
schemes.

In this paper, an intuitive concept of combining the IAE filter 
with MMAE is proposed to maintain appropriate window length 
and take advantages of Q and R adaption scheme of IAE. The Win-
dow based Multiple Model Adaptive Estimation (WMMAE) scheme 
considers the window length as an unknown parameter and the 
IAE filters in the bank have options to choose from different win-
dow sizes. Hence, at each time instant the WMMAE will give 
higher weightage to the filter with lowest residual value [25] and 
lesser weightage to the ones which do not perform accurately.

2. Mathematical preliminaries

In this article, it is proposed to improve the MMAE based state 
estimation technique by incorporating IAE and MMAE in a co-
herent framework with the incorporation of window size as the 
unknown parameter in MMAE. The basic building block of MMAE 
is an extended Kalman filter which are stacked together to provide 
a weighted sum of all KFs. The WMMAE scheme proposed here re-
places EKF with IAE and thus the theoretical concepts related to 
EKF, IAE and MMAE are discussed here for a better comprehension 
of the ideas proposed in this paper.

2.1. Extended Kalman Filter

The Kalman Filter (KF) proposed in 1960 was designed only for 
linear systems and required modifications for it to be applied on 
non-linear physical systems. A non-linear version of the KF uses 
linearization based on Taylor series expansion and is referred to as 
Extended Kalman Filter (EKF) [6]. Although various other improve-
ments over KF, like the Unscented Kalman Filter, Particle Filter and 
H-infinity filter have been developed in the past, EKF is one of the 
most popular choices due to its computational efficiency.

EKF model varies from continuous to discrete to a hybrid of 
both and is applied accordingly for system under consideration. 
In most of the real world applications, the process and measure-
ment dynamics are continuous and discrete in nature respectively, 
compelling the designer to select a continuous process-discrete 
measurement EKF model. Such a hybrid system can be described 
as:

ẋ(t) = f
(�x(t)) + τc �w(t) (1)

yk = h(�xk) + �vk (2)

E
[ �w(t) �w(t − τ )T ] = Q δ(t − τ ) =

{
Q → t = τ
0 → t �= τ

(3)

E
[�vk �v T

j

] = Rδkj =
{

R → k = j
0 → k �= j

(4)

where �x is the system state, f (•) is the continuous process dy-
namics, yk is the discrete measurement state, h(•) is the measure-
ment mapping function, w(t) is continuous time white noise with 
covariance Q , and �vk is the discrete measurement noise with co-
variance R .

The details of EKF predictor and corrector equations are not 
covered here and may be referred to [25] for more details. The EKF 
scheme suffers from issues such as divergence and performance 
degradation when Q and R values are not chosen appropriately 
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