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To meet the requirements of the landing angle, miss distance, and control energy consumption, we study 
the optimal guidance law design for time-varying systems. In general, however, the optimal guidance 
law cannot be solved analytically. To solve the problem, we present a design method that combines the 
optimal control theory and segmental linear functions (SLFs). The optimal guidance law is designed using 
the proposed method. Ballistic simulations are conducted. Compared with the proportional navigation 
law, the optimal guidance law significantly increases the landing angle and decreases the miss distance. 
By averaging the time-varying coefficients of the optimal guidance law, we obtain a suboptimal guidance 
law. Simulations using the suboptimal guidance law are also made, and the results are compared with 
those of the optimal guidance law. The suboptimal guidance law is extremely simple and requires 
minimal onboard computational resources.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

A number of guided munitions require steep terminal trajecto-
ries that can increase the penetration capacity and damage effect. 
A steep trajectory can also increase the strike accuracy of global 
positioning system (GPS)-guided munitions, which have received 
considerable attention for their excellent features [1–5]. The GPS 
vertical measurement error is larger than its horizontal error [6,7]. 
To reduce the effect of this error on guidance accuracy, a near-
vertical descent is required in the terminal guidance phase. We 
can describe the steep degree using the landing angle, which is the 
absolute value of the terminal flight-path angle. Volume and cost 
constraints limit the control capability of guided munitions. There-
fore, minimal control energy consumption is expected during the 
flight of guided munitions. For the same reason, the landing angle 
is expected to approach but not equal 90◦ . Finally, for all guided 
munitions, the miss distance should be as small as possible.

All of these requirements can be achieved using a suitable guid-
ance law. Previous guidance law research related to angle con-
straints may be largely divided into two categories: optimal [8–11]
and not optimal. The latter is generally more likely to have ad-
vantages, such as simpler form, no range-to-target information re-
quirement [12], no time-to-go estimation requirement [13], and 
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robustness [14,15]. If we seek to optimize the combination of 
landing angle, miss distance, and control energy consumption, re-
search on the optimal guidance law with multi-constraints is nec-
essary.

To design the optimal guidance law, motion equations should 
be established first. These equations often include time-varying pa-
rameters. However, for time-varying systems, the optimal guidance 
law cannot generally be solved analytically. Therefore, time-varying 
parameters are not intended to appear in the guidance law de-
sign. When time-varying parameters are inevitable, two methods 
may be used to solve the problem. One method is substituting 
constants for time-varying parameters. This method is simple and 
employed by numerous studies. However, the simplification seri-
ously decreases the effect of the designed guidance law. In fact, 
this method cannot be applied when the variation range of the 
time-varying parameters is large. The other method is combining 
the optimal control theory and numerical value method. However, 
this method has not been actively reported in the design of opti-
mal guidance laws with multi-constraints.

In general, we obtain several discrete numerical values rather 
than the functional relationship between the control and state 
variables using numerical methods. Therefore, most numerical 
methods cannot be applied to the optimal guidance law design. In 
this paper, we present a design method of the optimal guidance 
law with multi-constraints based on segmental linear functions 
(SLFs) [16,17]. Compared with block pulse functions (BPFs), SLFs 
are slightly more complex, but they present better results [18].
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(a) The SLF set (b) The integral of the SLF set

(c) The reverse integral of the SLF set

Fig. 1. The SLF set, its integral, and its reverse integral.

2. Definition of SLFs and their some elementary properties

A SLF set φk(t) (k = 0, 1, 2, · · · , m) can be defined in the interval 
[0, T ] as follows:

φk(t) =

⎧⎪⎨
⎪⎩

(1 − k) + mt/T , (k − 1)T /m ≤ t ≤ kT /m

(1 + k) − mt/T , kT /m ≤ t ≤ (k + 1)T /m

0, otherwise

(1)

Based on Fig. 1(a), the product of two SLF is presented as follows:

φk(t)φ j(t) =
⎧⎨
⎩

φ2
k (t), k = j

φk(t)φ j(t), k = j ± 1
0, otherwise

(2)

Therefore, the SLFs are not disjoined with each other in the inter-
val t ∈ [0, T ]. When (k − 1)T /m ≤ t ≤ kT /m, for any f (t), we have 
the following:

m∑
k=0

f (t)φk(t) = f (t)
(
(1 + k − 1) − mt/T

)
+ f (t)

(
(1 − k) + mt/T

) = f (t) (3)

An arbitrary integrable function f (t) in [0, T ] can be expanded 
into the SLF series as follows:

f (t) ∼=
m∑

k=0

fkφk(t) = ΦT(t)F (4)
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