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In this paper, we investigate the nonlinear radiation effects in a time-dependent two-dimensional flow 
of a Casson fluid squeezed between two parallel disks when the upper disk is taken to be impermeable 
and the lower one is porous. Suitable similarity transforms are employed to convert governing partial 
differential equations into the system of ordinary differential equations. A well known Homotopy Analysis 
Method (HAM) is employed to obtain the expressions for velocity and temperature profiles. Effects of 
different physical parameters such as squeeze number S , Eckert number Ec and the dimensionless length 
on the flow when keeping Pr = 7 are also discussed with the help of graphs for velocity and temperature 
coupled with comprehensive discussions. Mathematica Package BVPh2.0 is utilized to formulate the total 
error of the system for both the suction and injection cases. The skin friction coefficient and local Nusselt 
number are presented with graphical aids for emerging parameters.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Squeezing flow between parallel disks is an important area 
of interest because of its application in biofluid mechanics like 
pumping of heart, flow through certain arteries, polymer industry 
process, injection modeling, compression, liquid-metal lubrication, 
and the squeezed films in power transmission. Most frequently, 
squeezing flows were illustrated in modeling of metal and plas-
tic sheets, thin fiber and paper sheets formations etc. After the 
pioneer work done by Stefan (1874) [1], several attempts are re-
ported that extended the traditional problem to heat transfer case. 
Different studies are available in literature that used various so-
lution schemes to get analytical and numerical solutions for the 
said problem. Siddiqui et al. [2] examined a two-dimensional MHD 
squeezing flow between parallel plates. For parallel disk a similar 
problem has been discussed by Domairry and Aziz [3]. Both used 
the Homotopy perturbation method (HPM) to determine the solu-
tion.

Joneidi et al. [4] studied the mass transfer effect on squeez-
ing flow between parallel disks using Homotopy analysis method 
(HAM). Most recently the influence of heat transfer in the MHD 
squeezing flow between parallel disks has been investigated by 
T. Hayat et al. [5]. They used HAM to solve the resulting nonlin-
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ear system of ordinary differential equations. Since then squeezing 
flow has been of great interest for various researchers [6–8].

Investigations with heat transport phenomenon are important 
in many industrial applications such as wire coating, hot rolling, 
metal spinning, glass blowing, paper manufacturing, glass fiber, 
glass sheet productions, the drawing of plastic films, continuous 
casting and the aerodynamic extrusion of plastic sheets. Radiative 
heat transfer plays an important role in controlling where convec-
tive heat transfer coefficients are small. In polymer industry, the 
radiative heat transfer is an essential phenomenon for the design 
of reliable equipments, nuclear plants, gas turbines, etc. The pro-
cess of radiative heat transfer is also important in free and forced 
convection flows. Keeping all these applications in mind, many au-
thors studied various research problems for the case of radiative 
heat transfer. Some of these can be seen in [9–12] and references 
therein.

High nonlinearity of governing equations in various flow prob-
lems means unlikeliness of exact solution. To cope up with these 
problems, many approximation techniques have been developed. 
Highly nonlinear problems such as the ones discussed above are 
therefore solved by using these techniques. These include, Adomi-
an’s Decomposition Method (ADM), Variational Iteration Method, 
Variation of Parameters Method, Homotopy Perturbation Method, 
Homotopy Analysis Method, etc. [13–20].

Mathematical models describing the realistic flow problems 
mostly involve the Non-Newtonian fluids. One of these fluids is 
known as Casson fluid and its formulation is provided in [21,22], 
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Fig. 1. Schematics diagram of the problem.

it is found to be suitable for blood flow problems up to large ex-
tent.

Casson fluid flow between squeezing disks under radiative heat 
transfer has not been considered yet. To fill out this gap, heat 
transfer analysis for squeezing flow of Casson fluid between par-
allel disks under the effects of thermal radiation is presented. Well 
known Homotopy Analysis Method (HAM) [23–36] is employed to 
solve the problem. Graphs are plotted to analyze the effects of dif-
ferent emerging parameters on velocity and temperature profiles.

2. Governing equations

We have investigated parallel infinite disks h distance apart 
with magnetic field practiced vertically and being proportional to 
B0(1 − at)

1
2 (Fig. 1). Incompressible Casson fluid is used in be-

tween the disks. Magnetic field is negligible for low Reynold num-
bers.

Consequently, Casson fluid flow equation is delineated as 
[31–34]
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where p y is yield stress of fluid, μB the plastic-dynamic viscosity 
of the fluid and π is the self-product of component of deformation 
rate with itself and πc is the critical value of the said self-product. 
T w and Th are constant temperatures for lower and upper disk re-
spectively. The viscous dissipation effects in the energy equation 
are retained. We have chosen the cylindrical coordinates system 

(r, φ, z), where the upper disk is moving with velocity aH(1−at)−
1
2

2
towards or away from the stationary lower disk. Thus, the consti-
tutive equations for two-dimensional flow and heat transfer of a 
viscous fluid under the effects of thermal radiation can be written 
as:
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Supporting conditions are

{ū = 0, w̄ = −w0}|z=0{
ū = 0, w̄ = dh

dt

}∣∣∣∣
z=h(t)

(5)

T = T w |z=0

T = Th|z=h(t) (6)

In the above equations ū and w̄ are the velocity components in the 
r- and z-directions respectively, while ρ is the density, viscosity μ, 
p̂ the pressure, specific heat C p , T the temperature, v kinematic 
viscosity, k thermal conductivity, k∗ mean absorption coefficient, 
Stefan Boltzmann constant σ ∗ , and w0 is suction/injection velocity.

Substituting the following transformations [8]

ū = ar
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in Eqs. (2)–(4) and removing the pressure gradient from the sub-
sequent equations, we finally obtain(
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with associated condition

F̄ (0) = A, F̄ ′(0) = 0, θ(0) = 1,

F̄ (1) = 1

2
, F̄ ′(1) = 0, θ(1) = 0, (10)

where A denotes the suction/injection, Eckert number Ec, Hartman 
number M , squeeze number S , Prandtl number Pr, radiation pa-
rameter Rd , θw is the temperature difference parameter, and δ the 
dimensionless length defined as
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The skin friction coefficient and Nusselt number are defined as
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In view of (7), Eq. (12) can be written as
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