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Predicting the fuel consumption of transport aircraft is vital for minimizing the detrimental effects of fuel 
emissions on the environment, saving fuel energy sources, reducing flight costs, achieving more accurate 
aircraft trajectory prediction, and providing effective and seamless management of air traffic. In this study, 
a genetic algorithm-optimized neural network topology is designed to predict the fuel flow-rate of a 
transport aircraft using real flight data. This model incorporates the cruise flight phase and the fuel 
consumption dependency with respect to both the variation of true airspeed and altitude. Feed-forward 
backpropagation and Levenberg–Marquardt algorithms are applied, and a genetic algorithm is utilized to 
design the optimum network architecture regarding time and effort. The predicted fuel flow-rates closely 
match the real data for both neural network training algorithms. Backpropagation gives the best accuracy 
for the climb and cruise phases, whereas the Levenberg–Marquardt algorithm is optimal for the descent 
phase.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Because fuel rates constitute the largest portion of operational 
costs, airlines, aircraft manufacturers, and air traffic authorities at-
tempt to implement procedures to reduce fuel consumption, such 
as continuous descent and tailored arrivals, and employ modeling 
approaches to predict the fuel flow-rate [1]. Conservation of fuel 
energy sources, as well as the reduction of detrimental effects of 
fuel emissions on the environment, can only be fulfilled in this 
way. Furthermore, the accomplishment of more accurate aircraft 
trajectory predictions, which will provide more effective manage-
ment of air traffic, demands the development of better propulsive 
and fuel flow-rate prediction models [2].

Early attempts to estimate fuel consumption use Collins’ model 
[3], which was also used in the FAA’s Airport and Airspace Sim-
ulation Model, SIMMOD. Later, Trani et al. [4] developed a neural 
network (NN) model for the prediction of fuel consumption us-
ing the Fokker F-100 aircraft performance flight manual data. As 
noted by Senzig et al. [1], this model requires detailed aerody-
namic information or a large database of airplane operations and 
associated airplane state data, meaning its acceptance was lim-
ited. While Trani et al.’s [4] NN model provided some accurate 
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results; it requires improvement in terms of the input parameters 
and optimization of the modeling architecture. Trani et al. intro-
duced the effect of a variable Mach number as an input parameter, 
and considered the initial and final altitudes, but not the effect 
of a variation in altitude. Additionally, the initial aircraft weight 
and temperature were also defined as input parameters. It should 
be noted that the specific air range, but not the fuel flow-rate, 
was given as an output parameter in their modeling of the cruise 
flight phase. They tested eight candidate topologies via a sensitiv-
ity analysis, and selected a three-layer model with eight neurons 
in the first two layers and one neuron in the output (third) layer. 
A trial-and-error method was used to select the number of lay-
ers and neurons, rather than an optimization for the NN model 
architecture [4]. Bartel and Young [5] developed a thrust-specific 
fuel consumption model for the cruise flight phase. Their model 
considered fuel consumption with respect to the Mach number, 
whereas the effect of the temperature ratio was excluded. The tem-
perature term was replaced by the ratio of any cruise thrust to 
the cruise thrust in some reference condition. Senzig et al. [1] in-
vestigated a fuel consumption model with regards to the terminal 
area. Their proposed arrival thrust-specific fuel consumption algo-
rithm was based on that of Hill and Peterson with modifications 
by Yoder. The temperature ratio effect, variation of Mach number, 
and net corrected thrust with respect to the pressure ratio were 
included in their model for the terminal area. Turgut and Rosen 
[6] recently proposed a fuel consumption model based on a ge-
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Fig. 1. Topology of a three-layer fuel flow rate FNN.

netic algorithm (GA) for the descent flight phase by considering 
the fuel flow-rate with respect to altitude. According to its user-
manual, Eurocontrol’s BADA (current version 3.12) [7] calculates 
the nominal fuel flow using the thrust and the thrust-specific fuel 
consumption, which is specified as a function of the true airspeed 
for all flight phases except the idle descent and cruise. The cruise 
fuel flow expression differs from the nominal fuel flow by an ad-
ditional correction coefficient, whereas for the idle thrust descent 
condition, the fuel flow is expressed as a function of pressure, al-
titude, and descent fuel flow coefficients.

The GA-NN model derived in this study considers the variation 
of both altitude and true airspeed as input parameters, and pro-
vides the fuel flow-rate as an output parameter for climb, cruise, 
and descent flight phases. This model is developed using real raw 
flight data records of the medium weight transport aircraft type, 
Boeing 737-800 operating in Pegasus Airlines of Turkey in 2009. As 
a modeling approach, flight altitude and true airspeed variations 
are inserted as inputs to the model to prevent the need for ex-
tensive detailed information of airplane operations and data. This 
enables accurate fuel flow-rate modeling in a simplified manner. 
With regard to the optimization of the NN modeling architec-
ture, the proposed model utilizes a GA method to determine the 
network input parameters and number of neurons in the hidden 
layer(s), thus achieving an optimal or nearly optimal model in a 
shorter time with less effort.

2. Neural networks

An NN is an information or signal processing system composed 
of a large number of simple processing elements, called neurons. 
These are interconnected by weighted links (or weighted connec-
tions) that cooperate to perform parallel distributed processing and 
solve computational tasks. NNs attempt to (at least partially) simu-
late the structure and functions of the brain and nervous system of 
living creatures [8]. Because the inputs of the first layer of neurons 
are connected to external data, this is called the input layer. Sim-
ilarly, as the outputs of the last layer of neurons are the result of 
the total NN, this is called the output layer. All neuron layers be-
tween the input and output layers are called hidden layers, whose 
action cannot be seen directly from the outside. If the outputs of 
one layer are all connected to the input of the next layer, and there 
are no connections within the same layer or from a later layer back 
to an earlier layer, this is regarded as a feed-forward network [9]. 
Collecting the values from all of its input connections, each neuron 
produces a single output passing through an activation function 
[10]. In this paper, a multilayer feed-forward NN (FNN) structure 
is used for the proposed fuel flow-rate prediction model. A num-
ber of parameters, such as the number of layers and the type and 
number of units per layer, must be defined for any FNN. Adjusting 
the weights of the network to create the desired output constitutes 
the last design step. This process is called training the NN. A fuel 
flow rate FNN model with two inputs (flight altitude and true air-
speed), three neurons, as an example, in a single hidden layer and 
one output (fuel flow rate) is shown in Fig. 1. Coefficients asso-

ciated with the hidden layer (weights and biases) are grouped in 
matrices W1 and B1, whereas coefficients associated with the out-
put layer are grouped in matrices W2 and B2. The output of the 
network can be expressed as

Y = f2
(
W2 f1(W1 X + B1) + B2

)
(1)

where X is the matrix of the input variables, f1 and f2 are the 
activation functions in the hidden and output layers, respectively, 
and Y is the matrix of the output variables [11].

2.1. Backpropagation algorithm with momentum

Backpropagation (BP) is a well-known training algorithm. After 
measuring the output error, the BP algorithm then calculates the 
gradient of this error and adjusts the NN weights in the direction 
of descending gradient. As a gradient-descent local search tech-
nique, BP is highly accurate, but may also fall into local optima in 
complex search landscapes.

The squared error of the NN for a set of patterns can be defined 
as

E =
P∑

p=1

N∑

i=1

(
xp

i − op
i

)2
(2)

where E is the squared error of the NN, whereas xp
i and op

i are 
the ith components of the expected vector and the current output 
vector for the pattern p, respectively, N is the number of output 
neurons, and P is the number of patterns. The weights of the net-
work define the actual value of the error function. Calculating the 
gradient of E , the BP algorithm updates the weights by moving 
them in the gradient descent direction, which can be expressed as

wij(t + 1) = wij(t) − η
∂ E

∂ wij
(3)

where wij(t) and wij(t + 1) correspond to the network weights 
at the steps t and t + 1, respectively. The parameter η > 0 is the 
learning rate controlling the learning speed. A momentum term is 
added to Eq. (3) to increase the stability of the search process:

wij(t + 1) = wij(t) + m�wij(t) − η
∂ E

∂ wij
(4)

where �wij(t) shows the change in the weight wij at step t , and 
m is the momentum rate, which takes a value in the interval [0, 1). 
When the error function does not change, this term accelerates the 
error minimization [12].

2.2. Levenberg–Marquardt algorithm

Being a variation of the Gauss–Newton (GN) method, the 
Levenberg–Marquardt (LM) algorithm is designed to minimize 
functions that are sums of squares of other non-linear expres-
sions [13]. The LM algorithm acts as an intermediate optimization 
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