
Aerospace Science and Technology 49 (2016) 63–72

Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Modeling graph-based satellite design languages

Johannes Gross ∗,1, Stephan Rudolph

Institute for Statics and Dynamics of Aerospace Structures, University of Stuttgart, Pfaffenwaldring 27, 70596 Stuttgart, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 June 2014
Received in revised form 8 October 2015
Accepted 19 November 2015
Available online 27 November 2015

Keywords:
Design languages
Rule based design
Model-based engineering
Knowledge representation

Increasing complexity in spacecraft design requires new ways for comprehensive problem formulation. 
Graph-based design languages are an innovative response to this challenge. Using the Unified Modeling 
Language (UML), design languages are a formal, executable description of the design knowledge. The 
FireSat mission given in the textbook [1] from Wertz is used to demonstrate the analysis of more designs 
in shorter time.
For automating the design process, the domain knowledge is mapped onto a hierarchy of different 
modular design languages. Thereby the couplings between the components of the system are resolved 
and defined as generic interfaces. The variables and equations for the different subsystems are grouped 
in classes that describe the decomposition of the system. Rules are defined on the instance-level to 
recombine the different class-instances into a valid design description of the FireSat satellite. A sequence 
of these predefined rules specifies the integration of the components to a satellite system.
The paper is part of a series of three papers. The second paper [2] describes the analysis of equation 
systems for the whole satellite system. The third paper [3] shows the integration of detailed simulation 
models using the description mechanisms of the design language.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper is the first in a series of three papers describing the 
automation potential in the satellite design process by the use of 
so-called graph-based design languages. Throughout the paper the 
fictious FireSat mission described by Wertz in [1] and used by Lar-
son in [4] is used as reference example. Further FireSat examples 
to demonstrate language standards were given by Delp [5,6] and 
to demonstrate methodology by the authors of this publication in 
[7–11].

The current satellite design process as lived in various satel-
lite design centers throughout the world (e.g. in ESA’s CDF [12]) 
is based on concurrent engineering principles [13], but is still 
far from a complete process automation as implemented for the 
FireSat design process by the authors using a graph-based design 
language approach. The purpose of this paper focuses therefore 
uniquely on how such an automation of the satellite design pro-
cess can be achieved, what kind of information representation is 
needed and how the multi-disciplinary design information has to 
be structured and processed to reach the desired automation.

* Corresponding author.
E-mail address: johannes@jpl.nasa.gov (J. Gross).

1 This work was conducted for the PhD Thesis of the corresponding author at the 
University of Stuttgart.

2. Design languages

There exist many formal techniques for engineering design syn-
thesis as described in the book by Antonsson and Cagan [14]. Qual-
itatively, the methods for design synthesis and automation may 
be classified according to their formalisms exhibiting either string-
based, shape-based or graph-based representations. As one of the 
earliest precursors to the graph-based design language method-
ology as it is used later in this work so-called “L-Systems” have 
been conceived by Lindenmayer [15] and his co-workers [16]. L-
Systems dispose of a rule-based synthesis mechanism working 
on a string-based representation. The rules are expressed in an 
“IF-THEN”-format and work similarly to the “search-and-replace” 
mode in a text editor. L-Systems are therefore known in the field 
of computer science as rewriting systems [17]. The resulting string 
representation after rule execution is translated into geometry us-
ing a so-called “turtle graphic” translation table [16]. L-Systems 
have been shown to be a mighty and performant modeling and 
automated synthesis tool for all kinds of biological structures such 
as plants, trees, sea shells, etc.; see [18] for details. One of the 
main deficiencies of L-Systems experienced by the authors is how-
ever their inbuilt tree-like product architecture which, while fitting 
perfectly well to tree-like biological “product” architectures such as 
plants and trees, limits its applicability in engineering to cycle-free 
product architectures only.

http://dx.doi.org/10.1016/j.ast.2015.11.026
1270-9638/© 2015 Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.ast.2015.11.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
mailto:johannes@jpl.nasa.gov
http://dx.doi.org/10.1016/j.ast.2015.11.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2015.11.026&domain=pdf


64 J. Gross, S. Rudolph / Aerospace Science and Technology 49 (2016) 63–72

Shape grammars in contrary use a direct representation of ge-
ometry and a rule mechanism to directly manipulate shapes and 
create new (or combined) shapes from rules. Applications of shape 
grammars can be found most notably in architecture [19] and en-
gineering [20] as described in [14]. The shape grammars in 2D 
from Stiny [19] were later expanded to applications in 3D as in 
[21,22] and have been focussing on rule-based geometry creation 
in a comparable manner as in other design synthesis methods.

The direct geometry representation of shape grammars how-
ever, makes it difficult to represent and manipulate the steadily 
growing portion of non-geometric design information. Using a 
rule-based modification mechanism, Refs. [23,24] show the repre-
sentation and manipulation of functional and mathematical con-
straints. Furthermore the field of graph-grammars provides an 
automated synthesis of function structures as shown in [25,26]. 
These more abstract representations of design knowledge con-
tribute to an all-encompassing approach on graph-based design 
representation.

The working group of the authors consequently focused on 
the development of an abstract, graph-based design representation 
where geometry as well as functional and mathematical design in-
formation can be treated as first class citizens. Not much other 
research groups except Schmidt [27,28] seemed to share at the 
time this view. Using a completely abstract, graph-based design 
representation and a graphical rule-based synthesis mechanism, 
an early version of “graph-based design languages” was capable to 
automatically design and generate space stations [29,30], satellite 
designs [31,32], aircraft families [33], airships [34] and automotive 
structures [35,36]. Using a home-grown, self-developed graph rep-
resentation was however soon found to hinder a clear and concise 
knowledge representation which is easily accessible and readable 
by others.

As a consequence, the use of the internationally standardized 
Unified Modeling Language (UML) as formal representation syn-
tax for graph-based design languages was investigated by Reich-
wein [37]. Generating automatically consistent CAD-, MBS- and 
controls models from graph-based design languages in UML this 
work showed the integration capabilities of graph-based design 
languages on the basis of UML across various engineering disci-
plines. Similar works showing other abstraction and integration 
aspects of the methodology are from Arnold [38] on the digital 
factory integration and generation, by Beilstein [39] on structural 
joining technologies, by Landes [40,41] on the automated toleranc-
ing of aircraft structures and by Vogel [42,43] on the automated 
design, simulation, analysis and evaluation of off-highway exhaust 
systems. The work described here extends on the earlier works 
by Schaefer [31,32] on satellite design and is the first to show 
the interaction of different design languages based on UML in the 
broader context of consistent multi-disciplinary satellite design. 
The design language example in this paper series shows mathe-
matical, functional, geometrical and behavioral models integrated 
in one generative design model. It ranges from component-level 
over subsystem-level to system-level evaluations.

Any multi-disciplinary design activity (of satellites) is also 
closely related to the methodologies developed in systems en-
gineering. A related top down approach to integrate engineering 
disciplines is represented by the development and application of 
the Systems Modeling Language (SysML) [44–46].

In a spacecraft design process, a multitude of tools is used to 
manually create models of the design artifact. The design process 
using a design language differs from this approach. The graph-
based design language serves as an abstract problem description 
which can be translated to the various engineering domains. In 
Fig. 1 the resulting design process is shown.

The design language describes the names, properties and rela-
tions of the vocabulary. To define the possible combinations of the 

Fig. 1. Process when using design languages [47].

Fig. 2. Example of a Class Diagram.

Fig. 3. Simple rule with left (LHS) and right hand side (RHS).

vocabulary, rules are formulated. The execution sequence of the 
rules to build up a design is described by means of programs. The 
programs and rules are compiled by a design compiler to the de-
sign graph. From the design graph, models in different engineering 
domains can be generated. A feedback loop enables the control of 
the design process from a given design graph.

2.1. Vocabulary

The vocabulary of the design languages is modeled in the 
widespread standard of the Unified Modeling Language (UML). The 
single words of the vocabulary are modeled as UML-Classes. The 
name of the Class refers to the engineering artifact. The proper-
ties of the Class describe the attributes of the artifact. In Fig. 2 an 
exemplary Class Diagram is shown.

In the diagram the relation between the CommunicationSystem
and its Antennas is shown as a link. The Antenna can either be a 
HornAntenna or a ParabolicAntenna, which both inherit the prop-
erty “mass” from the upper class Antenna.

2.2. Rules

The rules to create instances of the classes are expressed in a 
graphical left-hand side (LHS)/right-hand side (RHS) schema. The 
LHS is the conditional part which is used to search the design 
graph. The RHS is the execution part which is used to define a 
change on the design graph. In Fig. 3 an exemplary rule is shown. 
This rule searches on the LHS an instance of a CommunicationSys-
tem and appends on the RHS an instance of an Antenna to it.

2.3. Programs

The programs are encoded using UML Activity Diagrams. In 
Fig. 4 an example activity is shown. The execution of the program 
starts at the initial node of the activity. Then the first rule Rule1
is executed. The second block “Interface” “calc” represents a call to 
an external software that solves the equation system. Then an UML 
Decision Node is used to make a query on the design graph about 
a specific model property. The condition formulated in the Object 



Download English Version:

https://daneshyari.com/en/article/1717733

Download Persian Version:

https://daneshyari.com/article/1717733

Daneshyari.com

https://daneshyari.com/en/article/1717733
https://daneshyari.com/article/1717733
https://daneshyari.com

