

Contents lists available at ScienceDirect

Aerospace Science and Technology

An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models

Kou Jiaqing, Zhang Weiwei*

School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

A R T I C L E I N F O

ABSTRACT

Article history: Received 20 April 2015 Received in revised form 18 August 2015 Accepted 5 December 2015 Available online 10 December 2015

Keywords: Reduced-order model Generalization capability Validation Neural networks Particle swarm optimization enhance the generalization capability of current ROMs. The proposed method is called the "modeling with validation case" approach. Instead of the conventional modeling process through training and test cases, three types of cases, namely, training, validation, and test cases, are introduced. The validation case is used to find the best parameters (widths of hidden neurons) of the model, in order to enhance the generalization capability of the nonlinear aerodynamic ROMs. Searching for optimal parameters is accomplished by the particle swarm optimization (PSO) algorithm, obtaining the minimal mean squared error of the validation case. The approach is applied to a recursive radial basis function neural network aerodynamic model. Two examples of a NACA0012 airfoil pitching in transonic flow are presented to compare the proposed approach with the conventional modeling process. The aerodynamic model with the proposed approach shows high accuracy from small to large pitching amplitudes in the time domain. In the frequency domain, comparisons of the first-order Fourier series indicate that the dynamic characteristics at different reduced frequencies and amplitudes are well captured. The conventional modeling process, the proposed approach can capture both linear and nonlinear accuracy at large amplitudes but fails to predict the dynamic linear behavior at small amplitudes. Compared with the conventional modeling process, the proposed approach can capture both linear and nonlinear

A novel modeling approach for nonlinear aerodynamic reduced-order models (ROMs) is developed to

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Computational fluid dynamics (CFD) enables the high-fidelity simulations of linear or nonlinear flow physics. However, the CFD solver is inappropriate for certain aeroelastic analysis, design optimization, or other applications because of expensive computational costs. An alternative scheme is adopted to establish a properly designed reduced-order model (ROM) with high accuracy. ROMs can represent an aerodynamic system and predict the aerodynamic loads. The advantages of ROMs lie in reducing computational cost and allowing for a wide range of analysis on certain coupled problems combined with other analytical tools.

Once a ROM is obtained after evaluation, the expensive computational cost of the CFD solver can be avoided and ROM techniques can be used to achieve aeroelastic analysis or aerodynamic load prediction. The overviews and applications of different ROMs are discussed by Zhang and Ye [1], Ghoreyshi et al. [2], and Lucia et al. [3]. Several typical ROMs applied at present include ROMs based on the proper orthogonal decomposition (POD) [4] or balanced POD (BPOD) [5], harmonic balance method [6] of unsteady aerodynamic forces, and ROMs based on the system identification methods (i.e., Volterra series [7], the autoregressive with exogenous input (ARX) model [8], surrogate-based recurrent framework (SBRF) [9], and neural networks [10–16]).

An aeroelastic system has nonlinearity because of many aspects. In general, aeroelastic nonlinearity mainly includes structural nonlinearity and aerodynamic nonlinearity. In this paper, the main topic is aerodynamic nonlinearity. Given a flow field at a small angle of attack and small perturbation, the flow varies slightly in a linear fashion with wing motion, which is usually defined as dynamic linear or static nonlinear aerodynamics. These problems can be represented by dynamic linear model, such as ARX and first-order Volterra series. However, for many transonic flows with large shock wave motions or at high angles of attack and considering the viscous effect, the unsteady aerodynamic loads show a strong nonlinearity. Thus, the dynamic linear models become essentially unsuitable. To deal with aerodynamic nonlinearity, many studies have been conducted. Glaz et al. [9] developed a type of SBRF referred to as a nonlinear autoregressive moving average with exogenous input model. By introducing the output feedback, the recurrent framework is constructed to predict the nonlinear aero-

^{*} Corresponding author. Tel.: +86 02988491342. E-mail address: aeroelastic@nwpu.edu.cn (W. Zhang).

Nomenclature

Α	relative amplitude of cases	V _{max}	the maximum velocity
а	the sound speed	V grid	the velocity introduced by the moving grid
b	the half chord length	\boldsymbol{V}_i^{d+1}	the velocity of the <i>i</i> th particle at the $d + 1$ th iteration
C_l	lift coefficient	\boldsymbol{v}_{j}	center vector of the <i>j</i> th neuron in the hidden layer
$C_{l(p)}$	lift coefficient at time instant p	Ŵ	the conservation vector
C_m	moment coefficient	$w_{i,0}$	the bias of the <i>i</i> th output neuron
$C_{m(p)}$	moment coefficient at time instant p	$W_{i,j}$	the weight that connects the <i>j</i> th hidden neuron to the
с	the number of neurons in the hidden layer		<i>i</i> th output neuron
<i>c</i> ₁	local acceleration constants	X_i^{d+1}	the position of the <i>i</i> th particle at the $d + 1$ th iteration
c ₂	global acceleration constants	$X_{\rm max}$	upper bound of width
D	dimension of sample space	$X_{\rm min}$	lower bound of width
DT	time step of CFD simulation	X	input vector of radial basis function neural network
d	current iterative number	y y	output vector of radial basis function neural network
dS	surface element of control volume Ω	y yi	the output of the <i>i</i> th neuron in the output layer
$E^{c}(W, V)$	(grid) the inviscid flux vectors	$y_i^{y_i}(\boldsymbol{X}_i)$	model output at <i>i</i> th data point of widths X_i
$E^{\nu}(W)$	the viscous flux vectors		the actual output matrix given by CFD solver
Gbest ^d _i	the global best position	Y CFD	the output of aerodynamic model
g	total iteration number	y simu	the maximum pitching amplitude
ĥ	radial basis function	α_0	mean pitching angle of harmonic motion
h _i	the output of the <i>j</i> th neuron in the hidden layer	α_m	the pitching displacement of the airfoil at time in-
h_p	the plunging displacement of the airfoil at time in-	θ_p	
np	stant p	Ω	stant p control volume
k	reduced frequency of pitching motion, $k = \omega b/V$		
к 1	the dimension of output vector y	Ω_i	the volume of the current <i>i</i> th grid cell width matrix of radial basis function neural network
	input delay order of aerodynamic model	σ	
m mso	mean squared error	σ_j	the width of the <i>j</i> th neuron in the hidden layer
mse N-	number of training data points	ω	the rotational velocity
N _T		ω_1	lower bound of the inertia weight
N(i)	the set of face-neighbor cells of the <i>i</i> th cell	ω_2	upper bound of the inertia weight
n m	output delay order of aerodynamic model	$\omega(a+1)$) the inertia weight at the $d + 1$ th iteration
n S _{im}	the outer unit normal vector to the boundary $\partial \Omega$ the normal vector area of the face shared by the <i>i</i> th	Abbreviations	
	and the <i>m</i> th cells	modelin	g with validation case $=$ a new modeling approach by
Size	population of particles		training/validation/test cases
S	the dimension of input vector x	modelin	g without validation case = conventional modeling ap-
р _.	the time instant		proach by training/test cases
\boldsymbol{P}_i^d	the local best position		ining = RRBFNN (PSO-Training) for short
QT	the source term of the S-A turbulence model	PSO-RRBFNN = RRBFNN model with optimizing widths by PSO	
R _{source}	the source term in URANS equation		algorithm
RE	relative error	PSO-Val	idation $=$ RRBFNN (PSO-Validation) for short
r_1	random numbers from 0 to 1	RBFNN	= radial basis function neural network
r_2	random numbers from 0 to 1	RRBFNN	= recursive radial basis function neural network
Т	non-dimensional time	RRBFNN	(PSO-Training) = incorporating the conventional mod-
T _{CFD}	time cost of all CFD simulations		eling approach in training PSO-RRBFNN, with the fit-
T _{ROM+M}	time cost of training the RRBFNN (PSO-Validation)		ness function set as the mean squared error of training
	model		case
t	real time	RRBFNN	(PSO-Validation) = incorporating the novel modeling
$t_{CFD(i)}$	the actual output of training case at <i>i</i> th data point		approach in training PSO-RRBFNN, with the fitness
\boldsymbol{u}_p	input vector of aerodynamic model at time instant <i>p</i>		function set as the mean squared error of validation
V	the flow velocity		case

dynamic loads at fixed or time-varying free-stream Mach numbers. He et al. [17] applied the superposition principle to aerodynamic describing functions by constructing an equivalent linearized aerodynamic model in frequency domain. Results demonstrated that this method can solve several weak nonlinear problems in the transonic limit cycle oscillation (LCO) prediction. Moreover, many nonlinear aerodynamic models based on neural networks [10-16] have been developed.

Neural networks are effective tools for modeling a broad category of complex nonlinear systems, especially those systems in which mathematical models are difficult to obtain [18]. Marquez and Anderson [10] predicted unsteady transonic aerodynamic loads by using multilayer functions and by constructing a temporal neural network with discrete time and limited memory. The results of lift coefficients are much better than those of moment coefficients. Suresh et al. [11] predicted lift coefficients at high angles of attack. However, to validate the generalization capability, test cases under different pitching angles and reduced frequencies are also needed. Zhang et al. [12] introduced the output feedback on radial basis function (RBF) neural network (RBFNN) to describe unsteady phenomena, thus achieving a recursive RBFNN (RRBFNN) to identify aerodynamic loads. Ghoreyshi et al. [13] developed an aerodynamic model based on RBFNN for approximation of nonlinear unsteady aerodynamics. Given that the model inputs include Download English Version:

https://daneshyari.com/en/article/1717746

Download Persian Version:

https://daneshyari.com/article/1717746

Daneshyari.com