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A novel modeling approach for nonlinear aerodynamic reduced-order models (ROMs) is developed to 
enhance the generalization capability of current ROMs. The proposed method is called the “modeling 
with validation case” approach. Instead of the conventional modeling process through training and test 
cases, three types of cases, namely, training, validation, and test cases, are introduced. The validation 
case is used to find the best parameters (widths of hidden neurons) of the model, in order to enhance 
the generalization capability of the nonlinear aerodynamic ROMs. Searching for optimal parameters is 
accomplished by the particle swarm optimization (PSO) algorithm, obtaining the minimal mean squared 
error of the validation case. The approach is applied to a recursive radial basis function neural network 
aerodynamic model. Two examples of a NACA0012 airfoil pitching in transonic flow are presented 
to compare the proposed approach with the conventional modeling process. The aerodynamic model 
with the proposed approach shows high accuracy from small to large pitching amplitudes in the time 
domain. In the frequency domain, comparisons of the first-order Fourier series indicate that the dynamic 
characteristics at different reduced frequencies and amplitudes are well captured. The conventional 
modeling process shows equivalent accuracy at large amplitudes but fails to predict the dynamic linear 
behavior at small amplitudes. Compared with the conventional modeling process, the proposed approach 
can capture both linear and nonlinear characteristics.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Computational fluid dynamics (CFD) enables the high-fidelity 
simulations of linear or nonlinear flow physics. However, the CFD 
solver is inappropriate for certain aeroelastic analysis, design opti-
mization, or other applications because of expensive computational 
costs. An alternative scheme is adopted to establish a properly 
designed reduced-order model (ROM) with high accuracy. ROMs 
can represent an aerodynamic system and predict the aerodynamic 
loads. The advantages of ROMs lie in reducing computational cost 
and allowing for a wide range of analysis on certain coupled prob-
lems combined with other analytical tools.

Once a ROM is obtained after evaluation, the expensive compu-
tational cost of the CFD solver can be avoided and ROM techniques 
can be used to achieve aeroelastic analysis or aerodynamic load 
prediction. The overviews and applications of different ROMs are 
discussed by Zhang and Ye [1], Ghoreyshi et al. [2], and Lucia 
et al. [3]. Several typical ROMs applied at present include ROMs 
based on the proper orthogonal decomposition (POD) [4] or bal-
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anced POD (BPOD) [5], harmonic balance method [6] of unsteady 
aerodynamic forces, and ROMs based on the system identification 
methods (i.e., Volterra series [7], the autoregressive with exoge-
nous input (ARX) model [8], surrogate-based recurrent framework 
(SBRF) [9], and neural networks [10–16]).

An aeroelastic system has nonlinearity because of many aspects. 
In general, aeroelastic nonlinearity mainly includes structural non-
linearity and aerodynamic nonlinearity. In this paper, the main 
topic is aerodynamic nonlinearity. Given a flow field at a small 
angle of attack and small perturbation, the flow varies slightly in 
a linear fashion with wing motion, which is usually defined as 
dynamic linear or static nonlinear aerodynamics. These problems 
can be represented by dynamic linear model, such as ARX and 
first-order Volterra series. However, for many transonic flows with 
large shock wave motions or at high angles of attack and consid-
ering the viscous effect, the unsteady aerodynamic loads show a 
strong nonlinearity. Thus, the dynamic linear models become es-
sentially unsuitable. To deal with aerodynamic nonlinearity, many 
studies have been conducted. Glaz et al. [9] developed a type of 
SBRF referred to as a nonlinear autoregressive moving average with 
exogenous input model. By introducing the output feedback, the 
recurrent framework is constructed to predict the nonlinear aero-
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Nomenclature

A relative amplitude of cases
a the sound speed
b the half chord length
Cl lift coefficient
Cl(p) lift coefficient at time instant p
Cm moment coefficient
Cm(p) moment coefficient at time instant p
c the number of neurons in the hidden layer
c1 local acceleration constants
c2 global acceleration constants
D dimension of sample space
DT time step of CFD simulation
d current iterative number
dS surface element of control volume Ω
Ec(W , V grid) the inviscid flux vectors
E v(W ) the viscous flux vectors
Gbestd

i the global best position
g total iteration number
h radial basis function
h j the output of the jth neuron in the hidden layer
hp the plunging displacement of the airfoil at time in-

stant p
k reduced frequency of pitching motion, k = ωb/V
l the dimension of output vector y
m input delay order of aerodynamic model
mse mean squared error
NT number of training data points
N(i) the set of face-neighbor cells of the ith cell
n output delay order of aerodynamic model
n the outer unit normal vector to the boundary ∂Ω

S im the normal vector area of the face shared by the ith 
and the mth cells

Size population of particles
s the dimension of input vector x
p the time instant
P d

i the local best position
Q T the source term of the S–A turbulence model
Rsource the source term in URANS equation
RE relative error
r1 random numbers from 0 to 1
r2 random numbers from 0 to 1
T non-dimensional time
TCFD time cost of all CFD simulations
TROM+MV time cost of training the RRBFNN (PSO-Validation) 

model
t real time
tCFD(i) the actual output of training case at ith data point
up input vector of aerodynamic model at time instant p
V the flow velocity

V max the maximum velocity
V grid the velocity introduced by the moving grid

V d+1
i the velocity of the ith particle at the d + 1th iteration

v j center vector of the jth neuron in the hidden layer
W the conservation vector
wi,0 the bias of the ith output neuron
wi, j the weight that connects the jth hidden neuron to the 

ith output neuron
Xd+1

i the position of the ith particle at the d + 1th iteration
Xmax upper bound of width
Xmin lower bound of width
x input vector of radial basis function neural network
y output vector of radial basis function neural network
yi the output of the ith neuron in the output layer
yi(X i) model output at ith data point of widths X i
yCFD the actual output matrix given by CFD solver
ysimu the output of aerodynamic model
α0 the maximum pitching amplitude
αm mean pitching angle of harmonic motion
θp the pitching displacement of the airfoil at time in-

stant p
Ω control volume
Ωi the volume of the current ith grid cell
σ width matrix of radial basis function neural network
σ j the width of the jth neuron in the hidden layer
ω the rotational velocity
ω1 lower bound of the inertia weight
ω2 upper bound of the inertia weight
ω(d + 1) the inertia weight at the d + 1th iteration

Abbreviations

modeling with validation case = a new modeling approach by 
training/validation/test cases

modeling without validation case = conventional modeling ap-
proach by training/test cases

PSO-Training = RRBFNN (PSO-Training) for short
PSO-RRBFNN = RRBFNN model with optimizing widths by PSO 

algorithm
PSO-Validation = RRBFNN (PSO-Validation) for short
RBFNN = radial basis function neural network
RRBFNN = recursive radial basis function neural network
RRBFNN (PSO-Training) = incorporating the conventional mod-

eling approach in training PSO-RRBFNN, with the fit-
ness function set as the mean squared error of training 
case

RRBFNN (PSO-Validation) = incorporating the novel modeling 
approach in training PSO-RRBFNN, with the fitness 
function set as the mean squared error of validation 
case

dynamic loads at fixed or time-varying free-stream Mach numbers. 
He et al. [17] applied the superposition principle to aerodynamic 
describing functions by constructing an equivalent linearized aero-
dynamic model in frequency domain. Results demonstrated that 
this method can solve several weak nonlinear problems in the 
transonic limit cycle oscillation (LCO) prediction. Moreover, many 
nonlinear aerodynamic models based on neural networks [10–16]
have been developed.

Neural networks are effective tools for modeling a broad cat-
egory of complex nonlinear systems, especially those systems in 
which mathematical models are difficult to obtain [18]. Mar-
quez and Anderson [10] predicted unsteady transonic aerodynamic 

loads by using multilayer functions and by constructing a tempo-
ral neural network with discrete time and limited memory. The 
results of lift coefficients are much better than those of moment 
coefficients. Suresh et al. [11] predicted lift coefficients at high an-
gles of attack. However, to validate the generalization capability, 
test cases under different pitching angles and reduced frequencies 
are also needed. Zhang et al. [12] introduced the output feedback 
on radial basis function (RBF) neural network (RBFNN) to describe 
unsteady phenomena, thus achieving a recursive RBFNN (RRBFNN) 
to identify aerodynamic loads. Ghoreyshi et al. [13] developed an 
aerodynamic model based on RBFNN for approximation of nonlin-
ear unsteady aerodynamics. Given that the model inputs include 
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