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Due to increasing demand of efficient cooling and heating systems in the field of automotive, aerospace 
and process industries, the heat transfer technology is gaining importance for the desirable solutions. 
By keeping in view the requirement of the efficient cooling/heating systems we have considered the 
problem of two dimensional convective laminar wall jet flow of a viscous nanofluid. The effects of 
thermo-diffusion and Brownian motion have also been considered during the investigation along with 
the convective boundary condition. Passive control condition is utilized to control the concentration of 
nanoparticles at the surface. After using similarity solution the obtained system of equations is solved 
by employing a well-known effective numerical scheme Runge–Kutta–Fehlberg method. The variation 
in velocity, temperature and concentration profile due to Magnetic forces, Lewis number and Prandtl 
number is recorded. It has been observed that Lorentz forces are important to control the extra vibrations 
in the fluid flow. Due to a passive control boundary condition, we have recorded a negligible effect of 
Brownian motion parameter on the heat transfer rate.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Recently, the study of convective flows of nanofluids is getting 
popular due to their enhanced thermal conductivities as com-
pared to the conventional fluids like oil, water, ethylene glycol, 
etc. The field of Nanotechnology opened new dimensions for many 
technologies likecooling systems, power generation, biotechnology, 
medicine, treatment of diseases like cancer, transportation, mili-
tary and security departments. Initially, Choi et al. [1] used nano/
micro sized particles in traditional liquids and observed that the 
heat transfer rate becomes doubled. Bég et al. [2] investigated the
transport of non-Newtonian nanofluids through porous medium 
in the presence of micro-organisms. Uddin et al. [3,4] repre-
sented model for radioactive hydromagnetic thermosolutal flow 
of nanofluids. A non-similar solution of free convective flow of 
nanofluids was carried out by Khan et al. [5] for the better under-
standing of flow of nanofluids with convective boundary condition. 
In [6–8] many researchers recorded their input in the form of nu-
merical results highlighting the effectiveness of nanofluids for the 
thermal conduction and heat transfer.

Whenever a fluid strikes a surface at an angle of 90 degrees, 
it spreads over forming a thin layer. Glauert [9] was the first one 
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to perceive this idea and describe the phenomena as wall jet flow. 
In order to study the flow properties analytically, he introduced 
similarity solution by using boundary layer theory. His work was 
extended by Merkin and Needham [10] by considering the case 
of wall motion and suction/injection through the walls. They re-
marked that the similarity solution stated by Glauert for wall jet 
flow is only obtainable if we also consider blowing/suction, while 
discussing the problem of moving walls in jet flows. The conclu-
sion tagged by Merkin and Needham [10] was endorsed by Mag-
yari and Keller [11]. They also recorded that for variant values of 
skin friction on the wall, we can get a family of solutions.

In literature the commonly presented models for nanofluids are 
dispersion model [12], homogeneous model [13] and Buongiorno 
model [14]. Of all the models, homogeneous model is widely pre-
ferred to extend the governing equations of conventional fluids to 
nanofluids due to its simplicity and compatibility. Subsequently, 
all the conventional heat transfer parameters used to measure the 
thermo-physical characteristics could also be used for nanofluids. 
The Said model is substantial for low concentration nanofluids 
because they are similar to Newtonian fluids. When the concen-
tration grows higher, then this model is not suitable to represent 
the behavior of nanofluids.

Many researchers recorded the flow properties of nanofluids by 
considering the homogeneous model. Bachok et al. [15] concluded 
that the rate of heat transfer can be improved by adding nanopar-
ticles to ordinary fluids. They used the geometry of rotating disk 
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Fig. A. Geometry of Problem.

and investigated the heat transfer through boundary layer flow of 
a nanofluid. Various studies are available in literature using differ-
ent models to analyze the nanofluids flow in different geometries. 
Some of these can be seen in [16–23] and references therein.

In this study, we consider the laminar wall jet flow of incom-
pressible nanofluid spreading through a narrow vertical slit with 
convective and more realistic boundary conditions which were 
suggested by Kuznetsov and Nield [24,25]. Also it is recorded from 
the literature that Mele et al. [26] and Zhou et al. [27] investigated 
the stability of wall jet from laminar to turbulent state by giving 
the range of Reynold number from 300 to 500. The similarity solu-
tion of the boundary layer problem with the transversely applied 
magnetic field is used to obtain the desirable form of governing 
equations. The assumption has been made for the existence of sim-
ilarity solution as u ∝ x−1/2 and the heat transfer coefficient vary 
inversely to the three-quarter root of the distance along the flat 
surface from the leading edge. Numerical approach has been used 
to analyze the correlated velocity, temperature and concentration 
profiles. Variation of different parameters is recorded and inter-
preted graphically to understand the insight of the problem. Effects 
of Hartman number, Biot number, Brownian motion parameter and 
thermophoresis parameter on Nusselt and Sherwood numbers have
also been explored.

2. Mathematical modeling

We consider two dimensional fully developed incompressible 
laminar wall jet flow of a viscous nanofluid at temperature T f
through a vertical thin slit with convective flow over a plate at 
temperature T w parallel to x-axis. The spread of fluid over the 
plate forms a boundary layer and at far field the temperature is 
represented by T∞ . Along with the convective boundary condi-
tion, a physically more practicable passive control model of the 
nanoparticle also taken into account. A transversely applied vari-
able magnetic field B(x) is also present as shown in Fig. A. The 
equations governing the flow under the aforesaid assumptions can 
be written as:
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with boundary conditions

u = 0, v = 0, −k f
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In given boundary conditions the assumption of controlling the 
volume fraction of nanoparticle at the surface is discarded and 
instead of that a passive control model is utilized. According to 
which nanoparticle flux will be zero at the surface. Here, u and v
are velocity components along x and y-axis, respectively, ρ f is the 
density of base fluid, υ f = μ

ρ f
is kinematic viscosity, p is the pres-

sure, σ is electrical conductivity and B(x) is the perpendicularly 
applied variable magnetic field. Sheikholeslami et al. [28], Chiam 
et al. [29] and Sadoughi et al. [30] proposed to take B(x) = B0x

r−1
2

where B0 and r are physical constants. Also k f is thermal con-
ductivity of the fluid, α f represents the thermal diffusivity, D B is 
Brownian motion diffusion coefficient, DT is thermophoresis dif-
fusion coefficient, T is fluid temperature and φ is the nanopar-
ticle volume fraction. (ρc) f and (ρc)p are the heat capacities of 
fluid and nanoparticle material respectively. Besides τ is the pa-

rameter defined by (ρc) f
(ρc)p

. Using boundary layer approximations, 
Eqs. (1)–(5) reduce to
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To get inside analysis of the problem, we use following similarity 
transforms [9,31]

η = y

ν1/2x3/4
, ψ = 4

√
νx1/4 f (η) , θ (η) = T − T∞

T f − T∞
,

φ (η) = φ − φ∞
φ∞

(for passive control of φ) (11)

We define stream function ψ as u = ∂ψ
∂ y and v = − ∂ψ

∂x .
By applying Eq. (11), the Eq. (7) is identically satisfied and a 

system of differential equations is obtained from Eqs. (8)–(10) as 
follows,

f ′′′ + f f ′′ + 2 f ′ 2 − M2 f ′ = 0, (12)

θ ′′ + Pr f θ ′ + Pr Nbθ ′φ′ + Pr Ntθ ′ 2 = 0, (13)

φ′′ + Le f φ′ + Nt

Nb
θ ′′ = 0. (14)

We get the reduced boundary conditions by utilizing Eq. (11),

f (0) = 0, f ′(0) = 0, θ ′(0) = −b
(
1 − θ(0)

)
,

Nbφ′(0) + Ntθ ′(0) = 0,

f (∞) → 1, θ(∞) → 0, φ(∞) → 0, (16)
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