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This work provides a suboptimal continuous torque solution for controlling an underactuated spacecraft 
using two control inputs. A sequential submaneuver strategy is proposed. Classical quadratic penalty 
approaches for the control lead to jump discontinuities in the resulting control time history that can 
potentially excite an unwanted flexible body response. To address this operational concern, this work 
revises the definition for the optimal control problem by introducing a torque-rate penalty in the 
performance index. The significant advantage derived from this approach is that control design freedom 
becomes available for specifying internal control state boundary conditions, which effectively eliminates 
the undesirable jump discontinuities. Further optimization is achieved by introducing a positive definite 
weight matrix that penalizes the quadratic control term. This weight matrix allows optimal tuning for 
the control performance where a balance is achieved between the often conflicting goals of minimizing 
the applied control during the maneuver and simultaneously enforcing the requirement that the 
resulting control be free of jump discontinuities. Numerical simulation results are presented to prove 
the effectiveness of the proposed method. The resulting control solutions are compared with a related 
approach for an underactuated system.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

This work presents a generalization of recent work by Kim and 
Turner [12] where they present a suboptimal control solution for 
an underactuated spacecraft. Many references for underactuated 
system control are listed in Ref. [12], thus a brief summary is 
provided. Most authors assume an axis-symmetric rigid body to 
simplify the underactuated system control problem. Krishnan et al. 
[17] and Tsiotras et al. [23] have treated an attitude stabilization 
problem of a rigid spacecraft using two gas jet actuators. Tsiotras 
[22] has presented a partial solution to the problem of optimal 
feedback reorientation, and Shen and Tsiotras [21] have treated a 
minimum-time reorientation problem. Tsiotras and Luo [25] have 
provided stabilizing feedback control laws for the kinematic sys-
tem of an underactuated spacecraft subject to input constraints. 
In addition, several time-invariant and time-varying control laws 
are introduced in Refs. [2,18,24,26]. Bacconi et al. [1] have pro-
posed a switching logic based control law, and Hall et al. [7] have 
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presented a control design, which combines a generalized inverse 
component for feedback linearization and an auxiliary input. Using 
the advantages of control moment gyros, angular rate damping and 
attitude control problems are handled in Refs. [8,29], respectively. 
For an asymmetric rigid spacecraft, Kim et al. [14,15] have pre-
sented a Davidenko-like homotopy method that generates a non-
linear open-loop solution for three-dimensional maneuvers when 
only two actuators are available. A sequential maneuver strategy is 
introduced by Kim et al. in Ref. [16] to avoid rotation about a failed 
actuator direction. This work is extended by Kim et al. in Ref. [13]
where an optimal control problem formulation is introduced.

The main contribution of this work is that the resulting control 
time histories are free of discontinuous changes initially, finally, 
and during the maneuver. This design freedom is accomplished 
by adding a torque-rate penalty to the torque-minimizing perfor-
mance index with a positive definite weight matrix. The weight 
matrix serves as a key between penalizing the magnitude of torque 
consumption and the smoothness of control. This approach enables 
the underactuated system to generate suboptimal control profiles 
that are free of jump discontinuities. It is desirable to eliminate 
control jump discontinuities because they can excite the higher 
mode flexural degrees of freedom because of the high frequency 
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content of the control profiles [4–6,27]. By eliminating jump dis-
continuities, this work seeks to minimize spill-over to the response 
of the flexural degrees of freedom.

This work is organized as follows: (i) general rotational dynam-
ics are slightly modified for describing the case where an actuator 
fails among three actuators, (ii) the modified Rodrigues parame-
ters (MRPs) are introduced as an attitude representation for any 
large-angle maneuver descriptions except for a complete revolu-
tion, (iii) necessary conditions are developed using the torque-rate 
appended form of the performance index, (iv) switch-time bound-
ary conditions are formulated, and (v) simulation results are pre-
sented to compare control profiles according to the torque-rate 
penalty portion for the performance index.

2. Problem formulation

2.1. Dynamics and kinematics

The method is presented for the special case of a control actu-
ator failure about the 3rd principal body axis, though the method-
ology easily generalizes to handle control failures about any body 
axis. To describe a case for the failure of an actuator, which is 
aligned with the 3rd principal body axis, the rotational dynamics 
equation of a rigid body [10,11,28] is slightly modified as

ω̇ � p(ω, u) = [ J ]−1(−[
ω×][ J ]ω + [P ]u)

(1)

where [ J ] ∈ R3×3 is the positive definite inertia tensor for the 
spacecraft, ω ∈ R3 is the angular velocity vector of the space-
craft, and u ∈R2 is the available control torque vector. The control 
mapping matrix, [P ] ∈ R3×2, and the cross product of the generic 
variable (d), [d×] ∈R3×3, are defined as

[P ] �
[

I2×2
01×2

]
,

[
d×]

�
[ 0 −d3 d2

d3 0 −d1
−d2 d1 0

]

The MRPs are a set of coordinates, which provide any attitude 
description except for a complete revolution [20]. The MRPs are 
defined in terms of the quaternion (ρ, q4) or the principal rota-
tional elements (Φ, ̂e) as

σ = ρ

1 + q4
= ê tan

Φ

4
(2)

where the MRPs have a geometric singularity at Φ = ±2π from 
Eq. (2).

The governing kinematic differential equation for the MRPs is 
given by

σ̇ � r(σ ,ω) = 1

4

[
B(σ )

]
ω (3)

where [B(σ )] ∈R3×3 is defined as[
B(σ )

]
�

(
1 − σ T σ

)[I3×3] + 2
[
σ×] + 2σσ T

2.2. Optimal control formulation

In Ref. [12], the following quadratic torque penalty term is in-
troduced in the performance index:

J � 1

2

t f∫
t0

uT u dt (4)

The optimal control solution for this problem is defined by a 
linear function of time. As a result, discontinuous control profiles 
are generated. This discontinuous control system behavior leads an 

unplanned excitation of the higher mode flexural degrees of free-
dom because of the high frequency content of the control torque 
history. In addition, the resulting control profiles are relatively sen-
sitive to modeling error and may therefore prove difficult to imple-
ment [9,11].

In order to eliminate mathematically generated discontinuities 
in control profiles, this work invokes the following performance 
index:

J � 1

2

t f∫
t0

(
uT [W ]u + u̇T u̇

)
dt (5)

where [W ] ∈R2×2 is the diagonal positive definite weight matrix; 
and t0 and t f are fixed initial and final times, respectively; u is 
assumed to have two continuous time derivatives, and the torque-
rate, u̇, is defined as

u̇ � g(u̇) = d

dt
u (6)

In Eq. (5), the weight matrix permits a trade-off between penaliz-
ing the magnitude of torque consumption and the smoothness of 
control.

Previously, Kim and Turner proposed a sequential maneuver 
strategy [12] and it is generalized to account for uniformly smooth 
control profiles. The details for the sequential maneuver strategy 
are not discussed here (see Ref. [12]).

A solution for Eqs. (1), (3), and (6) must satisfy the following 
boundary conditions:{

σ (t0) = σ t0 , ω(t0) = ωt0 , u(t0) = ut0

σ (t f ) = σ t f , ω(t f ) = ωt f , u(t f ) = ut f
(7)

where Eq. (7) describes the attitude, angular velocity, and control 
torque at the initial and final times. Note that one has freedom to 
specify the boundary conditions for the control torque.

2.2.1. Necessary conditions
Defining the Hamiltonian for the system

H = 1

2

(
uT [W ]u + u̇T u̇

) + ξ T r + μT p + ηT g (8)

where the Lagrange multipliers associated with the MRPs, angu-
lar velocity, and control torque are ξ ∈ R3, μ ∈ R3, and η ∈ R2, 
respectively. The first-order necessary conditions are obtained as 
follows:

(i) State equations:

σ̇ = ∂H
∂ξ

, ω̇ = ∂H
∂μ

, u̇ = ∂H
∂η

(9)

(ii) Costate equations:

ξ̇ = −∂H
∂σ

= −1

2

[
Λ(σ ,ω)

]T
ξ ,

μ̇ = −∂H
∂ω

= −1

4

[
B(σ )

]T
ξ − [

Σ(ω, J )
]T

μ,

u̇ = −∂H
∂u

= −[W ]u − [P ]T [ J ]−1μ (10)

where[
Λ(σ ,ω)

]
�

[
σ1ω1 + σ2ω2 + σ3ω3 ω3 − σ2ω1 + σ1ω2 σ1ω3 − σ3ω1 − ω2
σ2ω1 − ω3 − σ1ω2 σ1ω1 + σ2ω2 + σ3ω3 ω1 − σ3ω2 + σ2ω3

−σ1ω3 + σ3ω1 + ω2 σ3ω2 − ω1 − σ2ω3 σ1ω1 + σ2ω2 + σ3ω3

]
,

[
Σ(ω, J )

]
�

⎡
⎢⎣

0 J2− J3
J1

ω3
J2− J3

J1
ω2

J3− J1
J2

ω3 0 J3− J1
J2

ω1
J1− J2

J3
ω2

J1− J2
J3

ω1 0

⎤
⎥⎦
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