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The objective of this paper is to present a robust optimization algorithm for computationally efficient 
airfoil design under mixed (inherent and epistemic) uncertainty using a multi-fidelity approach. This 
algorithm exploits stochastic expansions derived from the Non-Intrusive Polynomial Chaos (NIPC) 
technique to create surrogate models utilized in the optimization process. A combined NIPC expansion 
approach is used, where both the design and the mixed uncertain parameters are the independent 
variables of the surrogate model. To reduce the computational cost, the high-fidelity Computational Fluid 
Dynamics (CFD) model is replaced by a suitably corrected low-fidelity one, the latter being evaluated 
using the same CFD solver but with a coarser mesh. The model correction is implemented to the low-
fidelity CFD solutions utilized for the construction of stochastic surrogate by using multi-point Output 
Space Mapping (OSM) technique. The proposed algorithm is applied to the design of NACA 4-digit airfoils 
with four deterministic design variables (the airfoil shape parameters and the angle of attack), one 
aleatory uncertain variable (the Mach number) and one epistemic variable (β , a geometry parameter) to 
demonstrate robust optimization under mixed uncertainties. In terms of computational cost, the proposed 
technique outperforms the conventional approach that exclusively uses the high-fidelity model to create 
the surrogates. The design cost reduces to only 34 equivalent high-fidelity model evaluations versus 168 
obtained with the conventional method.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Robust Design is a design methodology for improving the qual-
ity of a product by minimizing the impact of uncertainties on the 
product performance. The objective of robust design is to optimize 
the mean performance while minimizing the variation of perfor-
mance caused by various uncertainties. In the context of aerody-
namic shape optimization, robust design implies that the perfor-
mance (such as coefficient of drag, the lift-to-drag ratio, etc.) of 
the final configuration should be insensitive to the uncertainties in 
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the operating conditions (e.g., free-stream Mach number) and the 
geometry (e.g., manufacturing uncertainties). An important com-
ponent of robust design is Uncertainty Quantification (UQ), which 
may significantly increase the computational expense of the design 
process compared to the computational effort of deterministic op-
timization. This is particularly the case when high-fidelity analysis 
tools are involved in the design process in order to ensure suffi-
cient accuracy. Therefore, it is important to develop and implement 
computationally efficient robust design methodologies while keep-
ing the desired accuracy level in the optimization process.

Two types of input uncertainty should be considered in robust 
aerodynamic design studies: inherent (aleatory) uncertainty and 
epistemic uncertainty [1,2]. Aleatory uncertainty, which is proba-
bilistic and irreducible, describes the inherent variation associated 
with the physical system (e.g., the operating conditions). Epistemic 
uncertainty [3] is reducible and described as lack of knowledge or 
information in any phase or operation of a design process (e.g., tur-
bulence models used in CFD simulations). These two types of un-
certainties usually co-exist (e.g., mixed uncertainties) in real-world
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Nomenclature

n number of design variables
N number of random variables
pd deterministic state variable vector
SR support region of random input variable
np oversampling ratio
p order of polynomial chaos
ξ standard input random variable vector
p(ξ) probability density function of �ξ
ψ random basis function
a coefficient in polynomial chaos expansion
a∗ stochastic function
μ mean
σ standard deviation
Nt number of terms in a total-order expansion

Cl coefficient of lift
Cd coefficient of drag
M Mach number
α angle of attack in degrees
β geometry parameter in thickness distribution formula 

for NACA 4-digit airfoils
Re Reynolds number
Nh number of high-fidelity CFD simulations
N f number of low-fidelity CFD simulations
Ncost total design cost
LF low-fidelity
HF high-fidelity
CLF corrected low-fidelity

systems. In mathematical terms, aleatory uncertainties are charac-
terized by probability density functions with sufficient information 
on the type of the distribution. In order to characterize epistemic 
uncertainty, probabilistic methods are not suitable due to insuffi-
cient information about the uncertainty. One possible approach to 
model the epistemic uncertainty is to characterize it with intervals. 
For mixed uncertainty quantification, formulations that combine 
probabilistic methods and interval approach are usually sought. 
The aerodynamic response (e.g., the drag coefficient) should be in 
the form of the combination of probability distribution due to the 
effect of aleatory input uncertainty and interval distribution which 
indicate the effect of epistemic uncertainty.

This paper attempts to further reduce the computational cost 
of the robust design procedure introduced in Zhang et al. [4]
and builds upon the recent study by the authors [5], which fo-
cused on robust optimization under inherent uncertainties only. 
The proposed approach is based on replacing the computationally 
expensive High-Fidelity (HF) CFD model by its inexpensive repre-
sentation referred to as the Corrected Low-Fidelity (CLF) model. 
The Low-Fidelity (LF) model is evaluated using the same CFD solver 
but with a coarser mesh and relaxed convergence criteria. The mis-
alignment between LF and HF models is reduced by means of Out-
put Space Mapping (OSM) [6–9]. The OSM technique has tradition-
ally been used as an auxiliary response correction method in the 
context of design optimization, with the LF model being corrected 
at each iteration using the HF model data accumulated during the 
process. In the proposed approach, the correction can only be per-
formed once, for the points used for constructing the stochastic 
surrogate model based on Non-Intrusive Polynomial Chaos (NIPC) 
technique. Moreover, the CLF model has to be aligned sufficiently 
well with the HF model in the entire design space to be considered 
in the construction of the surrogate model subsequently utilized in 
the optimization process. Such an alignment is obtained by using 
design-variable-dependent multiplicative OSM set up with suffi-
cient number of HF training samples.

In the next section, different robustness measures and objec-
tive function formulation for robust design depending on the in-
put uncertainty type are given. The UQ approach, which is the 
point-collocation NIPC based stochastic expansions is described in 
Section 3. Further, the multi-fidelity approach involving the con-
struction of the CLF model based on the HF model using OSM 
strategy is explained in Section 4. To demonstrate the multi-fidelity 
robust optimization methodology under mixed uncertainties, a CFD 
example is presented in Section 5 with Mach number considered 
as aleatory uncertainty and β (geometry) parameter as the epis-
temic uncertainty. The NACA airfoil shape parameters and the an-
gle of attack are treated as deterministic design variables. Section 6

concludes the paper with important interpretations of the results 
obtained.

2. Problem formulation for robust optimization

2.1. Deterministic design

In general, the goal of Aerodynamic Shape Optimization (ASO) 
is to find a shape such that one or more performance metrics are 
optimized for a given operating condition(s), while at the same 
time fulfilling a set of constraints. Mathematically, the ASO prob-
lem consists of determining values of design variables x ∈ Rn , such 
that the objective function J : Rn → R is minimized,

min J (x,Q), (1)

subject to constraint equations,

g(x,Q) ≤ 0, (2)

where Q denotes the vector of conservative flow variables, and g :
Rn → Rm is a vector function containing m constraints. The flow 
variables must satisfy the governing flow equations, R,

R(x,Q) = 0. (3)

The functions J and g are assumed to be continuous and differen-
tiable over the design space of interest.

The problem formulation (1)–(3) is general and can be applied 
to different design approaches. The one-point and one-objective 
approach is widely adopted, where the aerodynamic surface is op-
timized for one operating condition with a single merit function. 
The most common example for this type of optimization is the 
lift-constrained drag minimization problem. Here, the goal is to 
improve the aerodynamic efficiency while maintaining a required 
lift. The objective function is set as

J = Cd, (4)

where Cd is the drag coefficient and the lift constraint is

g = C∗
l − Cl ≤ 0, (5)

where Cl is the lift coefficient obtained for design x, and C∗
l is the 

required lift coefficient. Parameters of the operating condition in-
clude the Mach number, M∞ , the Reynolds number, Re, and the 
angle of attack, α (which can be set as a design variable or it can 
be considered a state variable that is adjusted during the flow so-
lution to satisfy (3)). Formally, we can say that the lift and drag 
coefficients are a function of the design variables, x, and the state 
variables, p = [M∞ Re α]T , i.e., Cd = Cd(x, p) and Cl = Cl(x, p).
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