
Aerospace Science and Technology 45 (2015) 272–283

Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Cassiopee: A CFD pre- and post-processing tool

Christophe Benoit ∗, Stéphanie Péron ∗, Sâm Landier ∗

ONERA – The French Aerospace Lab, F-92322 Châtillon, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 January 2015
Received in revised form 29 May 2015
Accepted 30 May 2015
Available online 3 June 2015

Keywords:
Computational Fluid Dynamics
Pre-processing
Post-processing
CGNS
Open source software

This paper presents an overview of the capabilities of a new open-source pre- and post-processing tool 
for Computational Fluid Dynamics simulations, called Cassiopee. Its architecture, which is basically a 
set of Python modules, and the handled data, which is based on CGNS standard, are described. Some 
examples of workflows that can be built with Cassiopee functions are provided. Finally, some applications 
of Cassiopee functions to realistic CFD configurations are briefly presented.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In 2008, ONERA started a project to gather pre- and post-
processing tools in a single software, called Cassiopee [1], follow-
ing other initiatives as Salome [2] or gmsh [3]. At that time, pre-
and post-processing tools were spread among scientists, each one 
generally having its file formats and data representations. Thus, 
it seemed clear that capitalizing all the knowledge in a single 
software environment and making it interoperable was worth the 
effort. However, this effort pays off only if the common data rep-
resentation is well accepted and easily accessible to users.

For this reason, the Python language was chosen as a high level 
interface, since it is very fast to start with, easy to use and is 
spread in the scientific community (see for example: SciPy [4], 
matplotlib [5], Paraview [6], FieldView [7] or Tecplot [8]).

To simplify the use of Cassiopee, two interfaces are provided: 
the first one, that we call the “array” interface, is directly based on 
numpy arrays. In this way, Cassiopee functions can be easily mixed 
with functions using the numpy library.

The second interface is based on the Python representation of 
the CFD General Notation System (CGNS) of data [9]. The data 
handled by Cassiopee functions is then an imbricated set of lists 
describing a computation tree, compliant with the CGNS standard, 
as described by Poinot [10]. We call this interface the “pyTree” in-
terface.

* Corresponding authors.
E-mail addresses: christophe.benoit@onera.fr (C. Benoit), 

stephanie.peron@onera.fr (S. Péron), sam.landier@onera.fr (S. Landier).

Functions are classified in thematic Python modules, according 
to their features. Each Python module is independent and can be 
compiled and installed separately from the others.

Currently, among all the available functionalities, one can for 
example perform minor mesh modifications, mesh improvements 
(e.g. mesh smoothing), preprocessing of a CFD computation (e.g. 
connectivity computation or mesh splitting), code coupling or so-
lution post-processing.

Unlike other mesh generators dedicated to CFD simulations, 
such as Pointwise [11] or ANSYS ICEM CFD [12], Cassiopee does 
not provide a full solution to mesh generation. It is much more 
used as a supplementary tool for specific mesh generation or lo-
cal modifications (refinement, local smoothing...). It is also used to 
quickly develop prototype algorithms of mesh generation.

As compared to other overset grid assembly tools, such as Over-
ture [13], Suggar++ [14] or Chimera Grid Tools [15], the software 
gathers the algorithms developed at ONERA [16,17].

Concerning post-processing, Cassiopee has a very limited am-
bition and does not position itself within other post-processors, 
such as VisIt [18], Paraview, Ensight [19] or FieldView. So far, im-
plemented algorithms distributed as open-source are classic ones. 
Nevertheless, post-processing algorithms can be used in the same 
Python script as mesh generation functions, enabling to tackle 
some specific problems.

Today, these modules are commonly used for CFD and CAA 
applications at ONERA and some European aerospace industries. 
For instance, let us cite some rotorcraft, CROR and aircraft con-
figurations that use Cassiopee mesh generation functions [20–22], 
overset grid assembly functions [23–25] and post-processing func-
tions [26]. In 2013, Cassiopee modules were released under the 

http://dx.doi.org/10.1016/j.ast.2015.05.023
1270-9638/© 2015 Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.ast.2015.05.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
mailto:christophe.benoit@onera.fr
mailto:stephanie.peron@onera.fr
mailto:sam.landier@onera.fr
http://dx.doi.org/10.1016/j.ast.2015.05.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2015.05.023&domain=pdf


C. Benoit et al. / Aerospace Science and Technology 45 (2015) 272–283 273

Fig. 1. Example of a CGNS/Python (or pyTree) representation.

GNU General Public License GPL3, in the hope that it will be use-
ful to the CFD community.

2. Design choices

As previously said, the pyTree is one of the two choices of data 
representations available in Cassiopee. From now on, we will focus 
on this interface only. A pyTree is a hierarchical data set where 
each node is a Python list of this type:

[’name’, v, [], ’Type’] (1)

The string ’name’ is simply the name of the node, v is a numpy 
array defining the value of the node (for instance, for the first com-
ponent of the grid coordinates, say ‘CoordinateX’, the numpy array 
stores all the x-coordinate values for the corresponding zone), the 
string ’Type’ is a CGNS-compliant name and describes the node 
type (e.g. ’Zone_t’ for a zone node). The third element of the 
Python list is [] and define the list of nodes that are the current 
node’s children.

This structure enables to store the mesh coordinates (in a node 
named ‘GridCoordinates’), the flow solution (located at nodes and 
at centers), boundary conditions (in a node of name ‘ZoneBC’ for 
each zone) or the grid connectivity. An example of a representation 
of a pyTree is displayed in Fig. 1.

This data structure is common to all the modules of Cassiopee. 
In addition, the philosophy of Cassiopee modules is purely func-
tional, hence a Cassiopee function can be written as:

b = f (a) or _ f (a) (2)

where a and b are pyTrees. Function f returns a copy b of the 
pyTree, whereas function prefixed with a “_” results in an in-place 
modification of the pyTree (the given pyTree is directly modi-
fied by the function _ f ). For the sake of generality, we try (as 
far as possible) to make all the Cassiopee functions deal with all 
mesh types: structured meshes, unstructured meshes with basic 
elements, and polyhedral meshes, as displayed in Fig. 2. Element 
names are also defined according to the CGNS standard: for in-
stance an ‘NGON/NFACES’-type mesh describes a general polyhe-
dral mesh.

Another original feature of Cassiopee functions is that boundary 
conditions and solutions (defined both at nodes and centers) are 
also modified by the functions wherever this is relevant.

For example, consider a simple function that subzones a given 
zone. It can be applied either on structured grids (using min–max 
indices in the three directions of the zone) or on unstructured 
grids (given a list of element indices). When the subzone is cre-
ated, not only the grid coordinates are extracted, but also the 
solutions at nodes and cell centers and the boundary conditions 
as well.

3. Content of Cassiopee modules

The software is made of independent Python modules. Each 
module can be compiled and installed separately. The release R-3 
of Cassiopee contains thirteen modules [1], including Converter,
Geom, Generator, Transform, Connector, Post, described 
briefly in the following.

3.1. Converter module

Converter module enables input/output between the in-
memory data representation and various file formats of discrete 
data, such as Tecplot, plot3d, mesh, STL, OBJ... and of course 
CGNS/ADF and CGNS/HDF5 formats. Converter module also pro-
vides low-level functions to handle pyTrees, such as pyTree node 

Fig. 2. Mesh types compliant with Cassiopee functions.



Download	English	Version:

https://daneshyari.com/en/article/1717815

Download	Persian	Version:

https://daneshyari.com/article/1717815

Daneshyari.com

https://daneshyari.com/en/article/1717815
https://daneshyari.com/article/1717815
https://daneshyari.com/

