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In this paper, an optimal nonlinear feedback guidance algorithm with complex state and control 
constraints is developed for Mars powered decent. The analysis of the optimal control problem for Mars 
powered descent is undertaken firstly. Then based on the real-time sampling optimal feedback control 
theory, the Mars powered descent guidance (PDG) algorithm is designed and analysed. A practical method 
is also proposed to solve the problem of the initialization of the PDG algorithm. Numerical simulations 
are performed to evaluate the effectiveness of the proposed PDG algorithm. The effects of the sampling 
period and the prediction errors on landing errors are studied in the numerical simulations. The fuel 
consumption performances of the proposed PDG algorithm and the Apollo guidance algorithm are also 
studied and compared. The simulation results show that the less fuel consumption is obtained with the 
proposed PDG algorithm. Monte Carlo simulation verifies the high landing precision of the proposed PDG 
algorithm.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The process of delivering a Mars lander from the planetary or-
bit to a stationary position on the Mars surface, which presents a
unique set of challenges, may generally be split into three phases: 
entry, descent, and landing (EDL) for MSL-class landers [1,2]. The 
future Mars missions, such as the sample return, may target sci-
entifically interesting features that lie in areas far more hazardous. 
To avoid hazards and land safely and precisely, during the powered 
decent phase, future landers must have the ability to detect haz-
ards in the landing zone and manoeuvre to a selected safe landing 
site, which requires autonomous, onboard trajectory planning and 
execution, with hazard detection sensors in the control loop [3].

A substantial number of papers that examine the trajectory 
optimization and guidance algorithm design for Mars powered de-
scend have been published. Wong presents a Mars powered decent 
guidance (PDG) algorithm similar to that used for the Apollo lunar 
module, using polynomials of time to describe the desired position, 
velocity, and acceleration profiles [3]. This guidance algorithm is 
autonomous in nature and satisfies the request of real-time guid-
ance. This guidance algorithm is not an optimal guidance law in 
that it does not minimize fuel or any other cost functional. Also, 
the state and control constraints are neglected by Wong in his pa-
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per. Topcu derives a solution with maximum–minimum–maximum 
structure for the minimum-fuel powered descent guidance [4]. 
However, the state constraints are not considered in [4]. Taking 
state and control constraints into account, Acikmese [5] presents 
a convex optimization approach for the fuel-optimal Mars pow-
ered descent. Blackmore [6] further develops this method for the 
case where no feasible pinpoint landing trajectories exist. Guo 
investigates an optimization approach to generate waypoints in 
the context of employing the zero-effort-miss/zero-effort-velocity 
feedback guidance algorithm for the Mars landing problem [7], 
in which two cases with power-limited and thrust-limited engine 
are considered respectively. The approaches [4–6] require precise 
mathematical model of the lander dynamics and are not robust 
against uncertainties, e.g., the aerodynamic drag and wind, due to 
the open-loop strategy. This may lead to great errors at the fi-
nal time. It is shown in [4–6] that the optimal solutions can be 
efficiently computed numerically using the interior point meth-
ods or indirect methods. But the uses of interior point methods 
and indirect methods in a real-time terminal descent scenario are 
still an open research issue [8]. Although a closed-loop feedback is 
adopted to improve the robustness in [7], the complex constraints, 
e.g., thrust pointing constraints introduced by [5], cannot be han-
dled sufficiently. Using the desensitized optimal control methodol-
ogy, Shen [9] develops a Mars powered decent guidance law, which 
aims at reducing the sensitivity of the minimum-fuel powered de-
scent trajectory in the presence of uncertainties and perturbations. 
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Sostaric uses a Legendre pseudospectral method to develop a nu-
merical solution to the Mars powered descent [10]. However, nu-
merical optimization algorithms adopted to find approximate op-
timal solutions in [7,9,10] remain a challenge to approximate the 
optimal solution precisely with computations as less as possible, 
which may make these approaches inapplicable for autonomous 
onboard implementation, especially the real-time guidance. There-
fore, to develop real-time and robust Mars PDG algorithms, in 
which the state and control constraints are sufficiently considered, 
much more work is needed.

In this paper, we investigate a novel nonlinear closed-loop guid-
ance algorithm applicable to the suboptimal-fuel guidance for Mars 
powered decent. The proposed PDG algorithm uses a sampling 
optimal feedback approach and is applicable for the autonomous 
onboard implementation. In addition, the proposed PDG algorithm 
is robust against uncertainties and unmodeled dynamics. The PDG 
algorithm is developed with the consideration of the state and 
control constraints and has its roots in the real-time sampling op-
timal feedback control theory [11–14].

This paper is organized as follows. In Section 2, we formulate 
the powered descent guidance problem for Mars pinpoint land-
ing with complex state and control constraints. In Section 3, the 
analysis of the optimal control problem for Mars powered descent 
is undertaken firstly. The development of the proposed PDG algo-
rithm goes after the analysis of the optimal control problem. The 
analysis of the performance of the proposed PDG algorithm is also 
presented in this section. In Section 4, several numerical simula-
tions are performed to evaluate the effectiveness of the proposed 
PDG algorithm. The simulation results are discussed and analysed 
in this section. Finally, a 200-run Monte Carlo simulation is per-
formed considering several uncertainties and navigation errors.

2. Powered decent control problem formulation

The powered descent control problem formulation includes the 
lander translational motion dynamics and several constraints on 
the states and controls of the lander. The lander translational mo-
tion equations are presented firstly. To this end, we assume that 
n identical thrusters with equal thrust vector T at each time is 
mounted such that it is canted at an angle φ from the net thrust 
direction [5,6,8]. The translational motion equations of the lander 
in this document use a Mars surface-fixed Cartesian coordinate 
system with x and y axis located in the horizontal plane, z axis 
pointing upward and completing the right-hand coordinate sys-
tem. The equations of motion neglect the Coriolis accelerations due 
to the Mars rotation because the accelerations are too small com-
pared to the thrust acceleration. The equations of the translational 
motion for the lander are as follows:

ṙ = v (1)

v̇ = g (r) + (
T net + F per

)/
m (2)

ṁ = − ‖T net‖
/

Isp ge cosφ (3)

where r = [x, y, z]T and v = [vx, v y, vz]T are the position and 
Mars-relative velocity vectors respectively; g = [0, 0, gm]T denotes 
the gravitational acceleration vector on the surface of Mars, where 
gm = 3.76 m/s2 is the average gravitational acceleration on the 
surface of Mars; T net = nT cos φ is the net thrust vector; F per
is the total perturbing force, accounting for unmodeled or un-
known forces, such as the perturbations from the wind and aero-
dynamic forces; m is the lander mass. Isp is the specific impulse, 
ge = 9.807 m/s2 is the Earth’s gravitational constant.

The complex constraints on the lander motion include inequal-
ity and equality constraints. In detail, they are the constraints on 
the thrust magnitude, boundary conditions, lander mass, path, and 

Table 1
Complex constraints on the lander motion.

Constraints Representations

Thrust magnitude constraint Tmin ≤ ‖T net‖/n cosφ ≤ Tmax
Boundary conditions constraint r (t0) = r0, v (t0) = v0

r
(
t f

) = r f , v
(
t f

) = v f

Mass constraint m (t0) = m0, m
(
t f

) ≥ mdry

Path constraint 0 ≤ sin θ̃alt ≤ sin θalt = cTr
/‖r‖ ≤ 1

Net thrust vector direction 
constraint

0 ≤ sin θ̃cam ≤ sin θcam = cT T net
/‖T net‖ ≤ 1

net thrust vector direction respectively. The complex constraints 
are introduced briefly here. For more details about the derivation 
process of the constraints above, readers may refer to [5,6]. These 
constraints are summarized in Table 1 for the formulation of the 
powered descent control problem in this paper. In Table 1, Tmin
and Tmax are the minimum and maximum value of the thrust 
magnitude; t0 and t f are the initial and final time of the power 
descent; r0, v0, and m0 are the initial value of the position, veloc-
ity, and lander mass; r f and v f are the final value of the position 
and velocity, which are determined by the landing requirement; 
mdry is the mass of the lander without the propellant. The mass 
constraint is used to avoid the lander running out of the fuel dur-
ing the powered decent for a safely landing. The path constraint is 
constructed to prevent the subsurface fight, where θ̃alt ∈ [0, π /2 ] is 
a constant angle and c = [0, 0, 1]T is a unit vector. The thrust vec-
tor direction constraint considers a vision-based lander powered 
decent landing scenario. The lander is equipped with a camera 
which is required to be directed to the ground during the con-
trol process. Consequently, the downward pointing camera imposes 
a constraint on the lander attitude motion. For a lander with a sin-
gle net thrust vector, the translational motion is controlled through 
the attitude manoeuvre of the lander and changing the direction of 
the net thrust force. To ensure the camera working normally with 
high imaging qualities, the value of the angle θcam between the net 
thrust vector and the horizontal plane should have a right scope. 
In reality, a small θcam can result in a failing imaging. In Table 1, 
θ̃cam ∈ [0, π /2 ] is a design parameter related to the camera.

The translational motion model described by Eqs. (1)–(3) is em-
ployed to simulate the power descent of the lander. In the devel-
opment of the PDG algorithm, the total perturbing force Eq. (2) is 
neglected. The purpose of the PDG algorithm is to find a command 
T net in each guidance cycle for delivering the lander to the speci-
fied landing point, while simultaneously satisfying the constraints 
listed in Table 1 above and consuming the fuel as less as possible.

3. Optimal feedback guidance design and analysis

3.1. Analysis of the optimal PDG

The analysis of the optimal PDG problem neglects the effects of 
the total perturbing force and expresses the net thrust vector by

T net = Tnet, maxuα (4)

where Tnet,max is the maximum net thrust magnitude, u ∈ [0, 1] is 
the net thrust ratio, and

α = [cosβ cos θ, cos β sin θ, sin β]T (5)

is the unit vector of the net thrust direction with the direction 
angle β and θ defined as in Fig. 1.

Thus, we have the equations of the translational motion for the 
analysis and design of the PDG:

ṙ = v (6)

v̇ = g (r) + Tnet, maxuα
/

m (7)
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