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In this study, the investigation of structural unstable characteristics of high speed underwater vehicles is 
performed. For simplicity, a real vehicle was modeled as a follower force subjected beam that was resting 
on an elastic foundation, and the lumped mass effect was simplified as an elastic intermediate support. 
The stability of the simplified model was numerically analyzed based on the Finite Element Method 
(FEM). This numerical simulation revealed that flutter type instability or divergence type instability 
occurs, depending on the position and stiffness of the elastic intermediate support, which implies that 
the instability of the real model is affected by the position and size of the lumped mass.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

The maximum speed of underwater vehicles with a large slen-
derness ratio such as submarines or torpedoes is restricted due 
to considerable friction drag affecting the hull surface. The maxi-
mum speed of underwater vehicles does not exceed 40 m/s, and 
the actual operating systems do not use even more than half of 
the speed. Even though the characteristic of slow-moving under-
water vehicles has an advantage of underwater acoustics and fluid 
dynamics, modern torpedoes or submarines’ underwater weapons 
require high-speed propulsion. In 1997, the former Soviet Union 
had developed a torpedo called Shkval by this demand, and its 
maximum underwater speed came to 100 m/s. This underwater 
vehicle generated supercavitation caused by its high speed. The 
supercavitation is a phenomenon when fluid pressure air bubbles 
are formed on the vehicle surface by water vapor pressure when 
moving under water faster than a particular speed. These air bub-
bles could induce noises and speed reduction to cause structural 
instability by changing the cavitation area due to the vehicle’s 
speed [1].

Studies have been still continued on the underwater vehicle 
surface flow, and in 1997, the U.S. Navy’s NUWC (Naval Under-
sea Warfare Center) had succeeded in obtaining an underwater 
vehicle’s speed of 1549 m/s. This velocity exceeded the underwa-
ter sound velocity [14]. However, the thrust increase for speedup 
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basically induces tangential follower force caused by the thrust. 
Structures could become unstable statically or dynamically due to 
this loading characteristic [9]. In other words, the structural stabil-
ity analysis, which should consider dynamic stability as well as 
static one, becomes more important for elastic bodies receiving 
force with magnitude which is varied with time.

Fig. 1 shows the process of simplifying a high-speed underwa-
ter vehicle into a cantilever form which end is under load. The 
high-speed vehicle has a correlation between the drag, which is 
increased by speedup, and the thrust based on the drag point. 
Therefore, it could be simplified as a form of cantilever the end 
of which is fixed [8]. In addition, a device for preventing cavita-
tion could be attached to the front of the high-speed underwater 
vehicle to induce fluid flow and to apply elasticity parameters that 
result from the flow characteristic of the structure [1].

Fig. 1. Simplified vehicle model in cavitation condition.
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Simplifying a model considering inertia loads, it is simulated 
as a cantilever. In 1952, Beck, for the first time, had applied it to 
study the stability of a cantilever when the concentrated follower 
force is at work along its tangential direction from the beam’s 
end [5]. Since then, it was extended into studies on the lumped 
mass and distributed follower force. One of the studies on the 
follower force is the stability problem of a beam rested on an 
elastic foundation receiving the follower force, which was stud-
ied by Smith and Herrmann in 1972. They found that the size 
of elastic foundation parameters has no effect on the threshold 
values generating flutter [15], and thanks to this study, lots of 
studies have continued to carry out for the beam on an elastic 
foundation. This model could be divided into studies to extend 
elastic foundation parameters and ones to analyze structural sta-
bility by lumped mass. Anderson studied the effect of rotational 
inertia and internal damping on the system’s stability for the beam 
on an elastic foundation having concentrated mass and receiving 
follower force [4]. In 1992, Lee et al. studied the stability of the 
elastic supported Timoshenko’s beam [10]. Recently, Maurizi and 
Bambill also reviewed the stability problem of beams rested on 
an elastic foundation [11]. H. Ait Atmane et al. performed study 
on free vibration analysis of functionally graded plates resting on 
Winkler–Pasternak elastic foundations using a new shear deforma-
tion theory [2]. S. Benyoucef et al. studied investigation of bending 
of thick functionally graded plates resting on Winkler–Pasternak 
elastic foundations [6]. In 2010, S. Benyoucef et al. studied bending 
of thick functionally graded plates resting on Winkler–Pasternak 
elastic foundations [7]. In 2014, M. Ait Amar Meziane et al. per-
formed study on efficient and simple refined theory for buckling 
and free vibration of exponentially graded sandwich plates under 
various boundary conditions [3]. And also, K. Nedri et al. studied 
free vibration analysis of laminated composite plates resting on 
elastic foundations by using a refined hyperbolic shear deforma-
tion theory [12]. However, these studies used the beam rested on 
an elastic foundation as the model, so their parameters (external 
and internal damping, and concentrated tip mass, etc.) were lim-
ited to the effects on the beam’s stability.

In this study, actual high-speed underwater vehicles are mod-
eled as a cantilever structure rested on an elastic foundation re-
ceiving concentrated follower force to analyze dynamic instability 
characteristics of the high-speed underwater vehicles. In this case, 
the shear transverse effect is neglected. In addition, the structure’s 
lumped mass change at a particular position is considered as the 
intermediate support effect. The structure’s stability is evaluated 
by using this model to analyze structural vibration and stability de-
pending on the lumped mass position. For that purpose, the finite 
element method is used to numerically analyze natural frequen-
cies and modes of the structure. However, the fluid characteristic 
is considered simply as elastic support to understand only the ten-
dency of effects on the structure.

2. Theoretical analysis

2.1. Mathematical model

In the mathematical model of Fig. 2, the cantilever (Beck’s 
beam), which overall length is L and has a constant cross sec-
tion receiving follower force, is rested on an elastic foundation, and 
has a supporting point at an arbitrary position from the fixed end. 
Where, the beam’s flexural strength, mass per unit length and the 
elastic foundation spring constant are EI, m and k, respectively; 
and, E∗ is the inner material’s damping coefficient.

2.2. The equation of motion

Using the extended Hamilton principle to obtain the equation 
of motion for the model in Fig. 2, it is as follows:

Fig. 2. Beck’s beam on the elastic foundation with an intermediate support.
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For computational convenience, the following dimensionless co-
ordinates and parameters are introduced:
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where, ξ and η are coordinates of x and y, and τ , p, γ and 
κ are dimensionless parameters representing the time, follower 
force, internal damping and beam’s whole elastic support spring, 
respectively. m f is lumped mass change at a particular position. 
mp is mass by follower force, and ξ1 is the dimensionless parame-
ter indicating the position of intermediate supporting point, which 
is not expressed in the equation, but in the calculation program, it 
is calculated by considering that the deflection at the supporting 
point’s position is 0. Substituting Eqs. (2)–(6), and dimensionless 
parameters and coordinates in Eq. (7) into Eq. (1), it is as follows:

τ2∫
τ1

1∫
0

[ητ δητ + pηξ δηξ − κηδη − ηξξ δηξξ − γ ηξξτ δηξξ ]dξdτ

−
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The finite element method is applied to find a numerical so-
lution to Eq. (8). Fig. 3 shows that the beam is divided into N
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