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The aim of this paper is to design a globally robust and globally finite-time convergent attitude controller 
for a rigid spacecraft. Second order sliding mode control in integral sliding mode is proposed to design 
the controller. To eliminate the need of advance information about uncertainty and external disturbance 
bounds, the gains of the proposed controller are calculated using the adaptive laws. The second order 
sliding mode controller applied is based on geometric homogeneity approach. The finite-time stability 
is proved by using both the Lyapunov stability and negative homogeneity approach. Simulations are 
conducted for the attitude tracking and attitude stabilization under the effect of spacecraft mass inertia 
uncertainty and external disturbances; and the outcomes reveal the effectiveness of the proposed control 
method.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Sliding mode control (SMC) is an established robust control 
method which can be used to address aerospace control prob-
lems. The main motivation behind SMC is the inherent robustness 
and simple control design involved [8,24]. Specifically, the appli-
cation of SMC to spacecraft attitude control surfaced first in [26]. 
Since then it is being applied, and variety of controllers have been 
designed by many researchers [9,13,15,30]; and these controllers 
have fulfilled the attitude control design purpose to a large extent. 
In SMC design, the sliding surface is linear combination of system 
states; hence during the sliding phase, asymptotic convergence is 
possible, and theoretically infinite time is required to stabilize the 
states to their equilibrium. In addition to asymptotic convergence, 
chattering is another shortcoming of SMC.

In attitude control design, in addition to robustness against ex-
ternal disturbances and parametric uncertainties, it is expected 
from the attitude controller to perform attitude control quickly 
with good steady precision. Recently, finite-time sliding mode con-
trol has proven its competency to satisfy the requirement of quick 
convergence speed with good steady precision. In control liter-
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ature, to ensure the finite-time sliding mode, mainly two ap-
proaches have been explored, the first is the terminal sliding mode 
(TSM) [17,27,31], and the second is the higher order sliding mode 
(HOSM) [10,12]. In TSM and its variants (NTSM, FTSM, NFTSM) [7,
29,32,33] based control techniques, the sliding surface chosen is 
non-linear; so the finite time convergence in the sliding phase is 
ensured. By using TSM and its variants, significant number of at-
titude control designs are available in literature [5,6,14]. However, 
by TSM based control, neither global robustness is ensured (reach-
ing phase still exists) nor chattering is eliminated fully.

HOSM, another advanced version of SMC, primarily works to al-
leviate the chattering, to ensure the finite time convergence, and 
to improve the robustness. In HOSM, discontinuous control in-
put is applied on higher time derivatives of the sliding variable; 
and hence the sliding variable and its higher derivatives converge 
to zero in finite-time, and simultaneously chattering is also con-
trolled. Through literature survey, it is noticed that HOSM based 
attitude control design is not common; though, HOSM has proven 
its usefulness for many non-linear problems. The contribution of 
HOSM in attitude control design can be seen in [16,19,21,34]. Both 
in [21,34], firstly, the authors have chosen a linear sliding surface, 
and then, they have proposed to apply the quasi-continuous higher 
order sliding mode controller [11]; but, in fact, the linear slid-
ing surface selection gives relative degree r = 1, and hence, with 
the proposed controller the HOSM will not be established [16]. 
Another drawback with this approach is non-existence of global 
finite-time convergence, and it is due to the linear sliding sur-
face. Again, in [19], the sliding surface chosen is similar to [21]; 
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and the super-twisting algorithm based control is applied. There-
fore, in the mentioned HOSM attitude control methods [19,21,34], 
both robustness and finite-time convergence have not been en-
sured globally.

Integral sliding mode (ISM) control is another extension of SMC, 
and its performance has been found efficacious to improve the ro-
bustness [25]. ISM control actually is the total sliding mode; in 
which the sliding phase starts from initial time t0 = 0. ISM ap-
plication for attitude control design is not common, and till date 
only few research works have been reported [4,20]. In [20], us-
ing the control Lyapunov function and the Lyapunov optimizing 
controller (LOC), respectively, two optimal sliding mode controllers 
have been designed in integral first order sliding mode to address 
the tracking control problem. In these, LOC is the finite-time con-
trol method; but the main limitation of this method is to select the 
proper Lyapunov function. In [4], adaptive first order sliding mode 
control is designed in integral sliding mode to address the attitude 
tracking problem. However, the global finite-time convergence is 
not guaranteed; though, the proposed adaptive law to estimate the 
gain does not show over-adaptation.

In recent years, both the integral terminal sliding mode (ITSM) 
control [3] and the integral higher order sliding mode (IHOSM) 
control [18,22,23,35] have shown impressive control performance. 
The salient features of ITSM control is better robustness and fast 
response with finite time convergence; however, in terms of chat-
tering alleviation, ITSM performance is same as for TSM or its 
variants. In IHOSM, characteristics the global robustness, the global 
finite-time convergence, and chattering alleviation can all be guar-
anteed together by proper selection of the sliding surface and 
nominal controller. In [22], using the optimal feedback nominal 
controller, IHOSM control has been proposed; in fact, it is an open 
loop control, and calculations are based on the correct initial con-
ditions, but it is quite possible that in practical conditions, ini-
tial conditions of states may not be known accurately; therefore 
the control application will not be easy in uncertain environment. 
In [35], self-tuning law based IHOSM controller has been designed 
for a non-linear uncertain system; in this, finite-time controller 
design is based on geometric homogeneity, but the finite time sta-
bility proof is not discussed. More recently, authors of [23] have 
proposed the IHOSM controller by using quasi-continuous higher 
order sliding mode control; but the limitation of quasi-continuous 
mode is remained; though, controller gain calculation is done with 
adaptive law; and over-adaptation is averted. Additionally, in [18], 
adaptive IHOSM is applied and two control laws have been pro-
posed to control uncertain system. However, one control law does 
not ensure finite-time convergence globally; and adaptive law may 
suffer with over-adaptation. To the best of knowledge, till date the 
adaptive IHOSM has not been explored for spacecraft attitude con-
trol design; and theoretically, an adaptive gain based IHOSM would 
be the another more appropriate method for attitude control.

Our endeavor is to propose a global robust and global finite-
time convergent attitude controller for rigid spacecraft. Firstly, 
a sliding surface is identified that gives relative degree two. Then, 
the proposed control method is designed by using the geomet-
ric homogeneity controller in integral second order sliding mode 
(ISSM). To tackle the attitude states’s deviation from the sliding 
surface, the reaching law based control is added with the geomet-
ric homogeneity based nominal controller. Additionally, to elimi-
nate the advance requirement of external disturbance and inertia 
matrix uncertainty upper bounds and to alleviate the chattering, 
the controller’s gains are calculated by using adaptive laws. The 
rest of the paper is organized as follows. In Section 2, spacecraft at-
titude dynamics and kinematics are explained. The problem formu-
lation and the proposed control design are discussed in Section 3. 
The closed-loop stability proof is given in Section 4. In Section 5, 
simulation results and comparison with existing controllers are re-

ported with extensive discussion. The paper ends with concluding 
remarks in Section 6.

2. System description

2.1. Mathematical modeling

Quaternion, due to its non-trigonometric expression and non-
singularity computation, is the widely used parameter to represent 
the attitude kinematics of rigid spacecraft [28].

The kinematics equations using the unit quaternion are given 
as

q̇v = 1

2

(
q4 I3×3 + q×

v

)
ω

q̇4 = −1

2
qT

v ω (1)

where qv = [q1 q2 q3]T ∈ �3 and q4 ∈ � are the vector and scalar 
components of the unit quaternion q = [q1 q2 q3 q4]T , respec-
tively, satisfying the constraint qT

v qv + q2
4 = 1, ω ∈ �3 is the body 

angular velocity, and I3×3 is the identity matrix. For any vector 
m = [m1 m2 m3]T ∈ �3, notation m× is defined by

m× =
[ 0 −m3 m2

m3 0 −m1
−m2 m1 0

]
Rigid spacecraft attitude dynamics equation is defined by

ω̇ = J−1(−ω× Jω + u(t) + d(t)
)

(2)

where J ∈ �3×3 represents the mass inertia matrix with nominal 
component J0 ∈ �3×3 and uncertain term δ J ∈ �3×3, u(t) ∈ �3 is 
the control input, and d(t) ∈ �3 symbolizes the all external distur-
bances acting on the body.

To define the attitude kinematics and dynamics equation for 
tracking control problem, the relative attitude error between body 
frame and a desired reference frame is required to be established. 
The error quaternion qe = [qT

ev, qe4]T ∈ �3 × � and the angular ve-
locity error ωe ∈ �3 are measured from body fixed reference frame 
to the desired reference frame, and the defining equations are as 
follows

qev = qd4qv − q×
dvqv − q4qdv

qe4 = qT
dvqv + q4qdv

ωe = ω − Cωd, (3)

where qev = [qe1 qe2 qe3]T and qe4 are the vector and scalar com-
ponents of the error quaternion, respectively, qdv = [qd1 qd2 qd3]T ∈
�3, qd4 ∈ �, and ωd = [ωd1 ωd2 ωd3]T ∈ �3 are the desired atti-
tude frame vector quaternion, scalar quaternion, and angular ve-
locity, respectively. Both qe and qd = [qd1 qd2 qd3 qd4]T satisfy 
the constraint qT

evqev + q2
e4 = 1 and qT

dvqdv + q2
d4 = 1, respectively. 

C = (q2
e4 − 2qT

ev)I + 2qevqT
ev − 2qe4q×

ev ∈ �3×3 with ‖C‖ = 1 and 
Ċ = −ω×C represents the rotation matrix between body fixed ref-
erence frame and desired reference frame.

Then, by using (3), for the attitude tracking case, the kinematics 
and the dynamics equation could be written as

q̇ev = 1
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ω̇e = J−1(−(ωe + Cωd)
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+ J
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)
. (5)
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