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The problem of finite-time attitude stabilization of a rigid spacecraft is investigated. Homogeneous system 
theory is utilized to design a simple nonlinear proportional-derivative-type (PD-type) saturated finite-
time controller (SFTC), which can accommodate its form to different attitude parameterizations, such as 
quaternion, Rodrigues parameters (RP) and modified Rodrigues parameters (MRP). The proposed SFTC is 
inertia-independent and yields bounded control torques, in addition to finite-time convergence. Specially, 
the quaternion-based SFTC avoids the unwinding phenomenon associated with traditional continuous 
quaternion-based control laws and achieves, as shown by the Monte Carlo analysis, a faster convergence 
than a previous quaternion-based finite-time attitude stabilization law. Numerical examples are presented 
to verify the efficacy of the proposed method.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The attitude control of a rigid body long has been a research 
interest [21], due to its potential applications to abundant mechan-
ical systems such as robotics, aerial and underwater vehicles, and 
single or multiple spacecraft. Various control techniques have been 
applied to deal with the pointing control, large angle maneuver, 
and attitude tracking of a rigid spacecraft, etc., and extensive re-
sults have been gained [17].

The attitude of a rigid spacecraft actually evolves on the set of 
3 × 3 rotation matrices SO(3), which is a compact manifold and 
is not equivalent to a linear vector space. This special topological 
feature prevents the existence of a continuous feedback law that 
globally asymptotically stabilizes a desired attitude on SO(3) [1]. 
In other words, continuous or smooth attitude control systems al-
ways possess multiple equilibria. SO(3) can be parameterized in 
numerous ways, among which unit quaternion is a redundant set 
of coordinates, double covering SO(3) [17]. The same topologi-
cal obstruction, however, exists on the quaternion space. For the 
quaternion control laws in [22,23], Lyapunov stability of the de-
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sired physical attitude fails, resulting in the undesirable unwinding 
phenomenon. More precisely, although two quaternion equilibria 
both represent the same orientation, if the initial condition is close 
to the unstable equilibrium, the control law will drive the space-
craft to rotate almost a full revolution to the stable equilibrium. 
Such an unnecessary large angle slew will consume a considerable 
amount of control energy.

To overcome this problem, the set control approach was intro-
duced in [10,11] to stabilize both two equilibria of the quaternion 
control system, yielding a discontinuous switching when initiat-
ing the control. Another discontinuous control law designed in [6], 
however, may induce the chattering problem in the vicinity of the 
switching surface due to sensor noise or disturbances. Another so-
lution to eradicate unwinding is the geometric control approach on 
SO(3), which utilizes the uniqueness of rotation matrices in repre-
senting the attitude. In [16], a smooth attitude tracking law was 
constructed directly on SO(3). The resulting closed-loop systems 
are almost globally asymptotically stable, which means that the 
desired equilibrium is asymptotically stable except for a set of ini-
tial conditions with zero measure. Such kind of stability is weaker 
than global asymptotic stability but can be useful in practice, since 
a set of zero measure implies that the probability of entering such 
a set is zero.

Another problem is that most of the traditional attitude con-
trol laws are essentially smooth and can only yield asymptotic or, 
at best, exponential convergence of the closed-loop trajectories. In 
contrast, nonsmooth control laws may drive the system states to 
the equilibrium in finite time [2], which implies faster convergence 
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and stronger disturbance rejection than asymptotic or exponential 
stabilization laws [10,11].

Recently, several investigations [5,10–12,24] have considered 
the application of the finite-time control method to spacecraft atti-
tude control. The resulting control laws in [5,10,11], however, rely 
on an accurate system model to for implementation. Adaptive ter-
minal sliding mode (TSM) and nonsingular terminal sliding mode 
(NTSM) control laws, which are robust to external disturbance 
and inertia uncertainties, were proposed in [12,24] to stabilize the 
spacecraft attitude with finite-time convergence. All the preceding 
finite-time control schemes, however, are relatively complicated in 
their forms and do not consider the input saturation problem. In 
other words, the actuators are assumed to provide any required 
control torque, whereas physical saturation constraints commonly 
exist among actuators. Ignoring this feature may severely degrade 
the performance of the control laws or even lead to instability 
of the system [18,20]. In [8], a velocity-free finite-time stabiliza-
tion law was proposed. A switching type finite-time stabilization 
law was constructed in [4], yielding bounded control torques. The 
knowledge of the spacecraft inertia, however, is indispensible in or-
der to effectively execute the switching logic, and thus this control 
law still depends on an accurate system model. Simple finite-time 
stabilization laws based on Rodrigues parameters (RP) and modi-
fied Rodrigues parameters (MRP) were also designed in [19], but 
the actuator saturation problem was considered. A constructive 
method was proposed in [15] to design finite-time attitude sta-
bilization law on SO(3) and this method was then applied to the 
stabilization of simple mechanical systems [14]. The stabilization 
law in [15], however, is model-dependent and does not take the 
actuator saturation into account.

In this paper, the attitude stabilization problem of a rigid space-
craft is revisited. A simple nonlinear proportional-derivative-type 
(PD-type) saturated finite-time controller (SFTC) based on quater-
nion is designed to stabilize the spacecraft attitude. By means of 
the homogeneous system theory [7], almost global asymptotic sta-
bility and local finite-time stability of the two desired quaternion 
equilibria representing the same physical orientation are strictly 
proved. This property not only overcomes the unwinding phe-
nomenon but also yields faster convergence and better distur-
bance rejection than asymptotically or exponentially stable sys-
tems. In this sense, the resulting almost global finite-time stability 
is stronger and more desirable than the almost global asymptotic 
stability, and can be viewed as the strongest stability for continu-
ous attitude control systems, given the topological obstruction on 
attitude controls [1]. Apart from the finite-time stability, the SFTC 
achieves 1) robustness to inertia uncertainties, 2) the avoidance of 
the unwinding phenomenon associated with traditional continuous 
quaternion control laws, and 3) bounded torque input. In contrast, 
the linear or nonlinear PD regulators in [4,6,16,18,19,21–23] can 
only achieve part of the preceding merits.

In addition, the quaternion-based SFTC is extended to other at-
titude parameterizations, such as RP and MRP, yielding RP-based 
and MRP-based SFTCs in a similar structure. On the other hand, 
the quaternion-based SFTC in this paper can be viewed as a con-
siderable improvement of the finite-time stabilization law in [4], 
by eliminating its switching logic and simplifying its structure sig-
nificantly. A Monte Carlo analysis shows that such an improvement 
enables much faster convergence than the control law in [4], in ad-
dition to the inertia-free property.

The remainder of this paper is organized as follows. In Sec-
tion 2, the equations of a rigid spacecraft using unit quaternion, 
RP and MRP are recalled, preceded by the general properties and 
stabilization results associated with homogeneous systems. In Sec-
tion 3, the SFTCs based on quaternion, RP and MRP are derived and 
the stability of the resulting closed-loop systems is strictly proved. 

Illustrative simulation results are presented in Section 4 and con-
clusions are given in Section 5.

2. Preliminaries and system model

2.1. Mathematical preliminaries

Throughout this paper, let ln denote the index set {1, 2, · · · , n}
and ‖ · ‖ denote the Euclidean norm on Rn . Given ε > 0 and a 
weight vector r = (r1, · · · , rn) (ri > 0, ∀i ∈ ln), a dilation operator 
�r

ε is defined by �r
εx = [εr1 x1, · · · , εrn xn]T for ∀x = [x1, · · · , xn]T ∈

R
n [3]. In what follows, some basic definitions and properties on 

homogeneous systems, which will be utilized in proving the main 
results, are introduced.

Definition 1 (Homogeneity). (See [3].) Consider the system ẋ =
f (x), f (0) = 0, x(0) = x0, x ∈ R

n , where f : U �→ R
n is con-

tinuous on an open neighborhood U of the origin. Then, a con-
tinuous vector field f (x) = [ f1(x), · · · , fn(x)]T ∈ R

n is said to be 
homogeneous of degree k ∈ R with respect to a dilation �r

ε if 
f i(�

r
εx) = εri+k f i(x) for ∀i ∈ ln , ∀x ∈ R

n , and any ε > 0, where 
k > − min{ri, i ∈ ln}. System ẋ = f (x) is said to be homogeneous 
if f (x) is homogeneous.

Lemma 1. (See [7].) Consider the following system:

ẋ = f (x) + f̂ (x), f (0) = 0, x ∈R
n (1)

where f (x) is a continuous homogeneous vector field of degree k < 0
with respect to a dilation �r

ε , and the perturbation vector field f̂ (x)

satisfies f̂ (0) = 0. Assume that x = 0 is an asymptotically stable equi-
librium of the system ẋ = f (x). Then, x = 0 is a locally finite-time stable 
equilibrium of system (1) if

lim
ε→0

f̂ i(�
r
εx)

εri+k
= 0, i ∈ ln, ∀x �= 0 (2)

Moreover, if system (1) is (almost) globally asymptotically stable and lo-
cally finite-time stable, it is (almost) globally finite-time stable.

2.2. Equations of attitude motion

Denote S2 as the 2-dimensional unit sphere. Let η ∈ S2 de-
note a unit vector along the Euler axis and φ denote the rotation 
angle around η. Then, the unit quaternion q = [q0, q1, q2, q3]T =
[q0, qT

v ]T can be defined as q0 = cos(φ/2) and qv = sin(φ/2)η. 
Usually, q0 and qv are called the scalar and vector parts of the 
unit quaternion. It should be noted that the set of unit quaternion 
is a 3-dimensional unit sphere embedded in R4, i.e., q ∈ S3 and 
q2

0 + qT
v qv = 1. The attitude kinematics in terms of unit quaternion 

are given by[
q̇0

q̇v

]
= 1

2

[ −qT
v

E(qv)

]
ω, with E(qv)

�= q×
v + q0 I 3 (3)

where I3 denotes the 3 × 3 identity matrix and ω ∈ R
3 is the an-

gular velocity with respect to the inertial frame. The operator q×
v

denotes a skew-symmetric matrix generated by qv :

q×
v =

⎡
⎣ 0 −q3 q2

q3 0 −q1

−q2 q1 0

⎤
⎦

The RP can be defined by ρ = tan(φ/2)η, allowing ±180◦ non-
singular rotations, whereas MRP can be defined by σ = tan(φ/4)η, 
allowing ±360◦ nonsingular rotations. Note that shadow sets of 
MRP can be used to avoid its singularities [17]. The attitude kine-
matics in terms of RP and MRP are respectively given by
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