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A Lorentz spacecraft is an electrostatically charged space vehicle that could modulate the surface 
charge to induce Lorentz force as propellantless electromagnetic propulsion for orbital maneuvering. 
Modeling the Earth’s magnetic field as a tilted dipole corotating with Earth, a dynamical model of 
Lorentz-augmented spacecraft relative motion about arbitrary elliptic orbits is developed, based on which 
the optimal open-loop trajectory of Lorentz-augmented rendezvous is solved by Gauss pseudospectral 
method. To track the open-loop trajectory in the presence of external perturbations and without velocity 
measurements, a reduced-order observer and an output feedback controller are designed, ensuring the 
stability of the closed-loop system by a Lyapunov-based approach. Numerical simulations verify the 
validity of both the open-loop and closed-loop controllers.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Spacecraft are naturally to be charged in the ambient plasma 
environment, which is generally undesirable due to its deleterious 
effects on electronics on board [10]. Differently from traditional re-
searches on the passive mitigation of spacecraft charging, a new 
conception of Lorentz spacecraft that actively generates electro-
static charge on its surface to induce the Lorentz acceleration for 
orbital maneuvers via interaction with surrounding magnetic field 
has been proposed by Peck [11]. This kind of propellantless elec-
tromagnetic propulsion is preferable and promising in a series of 
applications, such as spacecraft rendezvous [14,19,7], spacecraft 
hovering [2,5,8], formation flying [12,16,15,6], planetary capture 
and escape [3,4], orbital inclination control [13] and so on. Despite 
the distinct advantages over traditional spacecraft in saving propel-
lant, the space mission design of Lorentz spacecraft is complicated 
by the fact that the Lorentz force could only act in the direction 
perpendicular to the local magnetic field and the vehicle velocity 
relative to the local magnetic field. Meanwhile, a Lorentz spacecraft 
is more effective in low Earth orbit (LEO) where the magnetic field 
is much intenser and the spacecraft travel faster to induce Lorentz 
force.

Natural charging levels may reach to the order of 10−8 C/kg, 
and the resulting Lorentz acceleration may not perturb the orbit 
in a significant way [17]. Efficient orbital control in LEO necessi-
tates charging levels higher than 10−5 C/kg [13]. A specific charge 
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of 0.03 C/kg seems to be the near-term feasible maximum [11]. 
Though insufficient for absolute orbital control such as LEO incli-
nations control, it is adequate to the relative orbital control such 
as spacecraft rendezvous.

Several previous researches have dealt with Lorentz-propelled 
spacecraft rendezvous problems based on the linearized models 
that describe the relative motion of Lorentz spacecraft. Modeling 
the Earth’s magnetic field as a tilted dipole corotating with Earth, 
Pollock et al. [14] derived approximate analytical solutions to the 
linearized equations of Lorentz spacecraft relative motion about 
circular orbits, based on which a rendezvous strategy was designed 
that the chaser initially locates in the in-track direction of the tar-
get in a circular equatorial orbit with zero relative velocity. Then, 
maintaining a constant specific charge could achieve rendezvous 
at the final time which should equal an integer number of orbit 
periods and an integer number of days. Such constraints on the 
initial relative states and the maneuver time arise from the char-
acteristics of linearized Lorentz spacecraft relative motion. Simi-
larly, by assuming that the Earth’s magnetic dipole is nontilted, 
Yamakawa et al. [19] investigated the relative dynamics of Lorentz 
spacecraft about elliptic reference orbits, and designed propellant-
less planar rendezvous strategies in equatorial orbits. Actually, the 
Earth’s magnetic dipole is tilted by nearly 11.3◦ with respect to the 
rotation axis of Earth. Considering this fact, Huang et al. [8] devel-
oped a nonlinear dynamical model of Lorentz spacecraft relative 
motion about arbitrary elliptic Earth orbits, and applied it to solve 
the optimal trajectory of Lorentz-propelled spacecraft rendezvous 
with no similar aforementioned constraints on initial relative states 
or maneuver duration by Gauss pseudospectral method (GPM) [9]. 
However, nearly all of the aforementioned strategies are open-loop 
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control methods. To fulfill rendezvous in the presence of external 
perturbations, closed-loop controllers remain to be designed.

Previous researches on closed-loop Lorentz spacecraft relative 
motion control indicate that the relative motion is not fully con-
trollable by using the Lorentz force alone [15,6]. To render the 
relative motion fully controllable, other kind of propulsion requires 
to be supplemented, such as the thruster-generated control ac-
celeration. Due to this reason, in solving the optimal open-loop 
rendezvous trajectory which will be tracked by the closed-loop 
controller, hybrid control inputs consisted of the specific charge 
and the thruster-generated control acceleration of Lorentz space-
craft are considered, and the resulting trajectory is a Lorentz-
augmented one but not a Lorentz-propelled one in our previ-
ous works that singly uses Lorentz force as propulsion for open-
loop rendezvous [9]. Nevertheless, by choosing appropriate ob-
jective function, a nearly propellantless rendezvous could also be 
achieved that the magnitude of the required thruster-generated 
control acceleration is nearly the same order as that of the exter-
nal perturbations or even smaller. Present closed-loop controllers 
for Lorentz-augmented spacecraft relative motion are almost all 
full-state feedback controllers [8,6], which are thus inapplicable 
to cases without relative velocity measurements. Since eliminat-
ing velocity sensors could reduce the cost and mass for control 
system [18], to handle the relative motion control without velocity 
measurements, an output feedback controller is designed in this 
paper.

The organization of this paper proceeds as follows. A nonlinear 
dynamical model for Lorentz-augmented spacecraft relative motion 
is developed in Section 2, followed by the description of open-loop 
control method in Section 3. Section 4 elaborates the design of a 
reduced-order velocity observer and a closed-loop output feedback 
controller. Numerical simulations are presented in Section 5, and 
Section 6 concludes the paper.

2. Dynamical model

2.1. Equations of relative motion

Consider two spacecraft subjects to the Earth’s gravity field, 
which are referred to as the chaser and target spacecraft, respec-
tively. The chaser is assumed to be a charged Lorentz spacecraft 
while the target is an uncharged one. As illustrated in Fig. 1, 
O E XI Y I Z I is an Earth-centered inertial (ECI) frame with its origin 
locating at the center of Earth, O E . O T xyz is the relative motion 
(RM) frame located at the center of mass (c.m.) of the target space-
craft, O T , where x axis is aligned with the radial direction, z axis is 
along the normal direction of the target’s orbital plane, and y axis 
completes the Cartesian right-handed frame. And O L is the c.m. of 
the Lorentz spacecraft.

The equations of orbital motion of the Lorentz spacecraft and 
the target spacecraft are, respectively, given by

d2RL

dt2
= − μ

R3
L

RL + aL + aC (1)

d2RT

dt2
= − μ

R3
T

RT (2)

where RL and RT are, respectively, the orbital radius vector of 
the Lorentz and target spacecraft. aL = [ ax ay az ]T and aC =
[ ar as aw ]T refer to the Lorentz acceleration and the thruster-
generated control acceleration acting on the Lorentz spacecraft, 
respectively. μ is the gravitational parameter of Earth.

Denote by ρ = RL − RT = [ x y z ]T the position vector of the 
chaser with respect to the target expressed in RM frame, then, the 
governing dynamics of Lorentz spacecraft relative motion can be 
described in RM frame as [5]

Fig. 1. Definition of coordinate frames.

ρ̈ = [ ẍ ÿ z̈ ]T = M(ρ, ρ̇) + aL + aC (3)

with

M(ρ, ρ̇) =
⎡
⎣2u̇T ẏ + u̇2

T x + üT y + n2
T RT − n2

L(RT + x)
−2u̇T ẋ + u̇2

T y − üT x − n2
L y

−n2
L z

⎤
⎦ (4)

where nT =
√

μ/R3
T and nL =

√
μ/R3

L , with R L = [(RT + x)2 +
y2 + z2]1/2 being the orbital radius of the Lorentz spacecraft. uT

is the argument of latitude of the target, thus, u̇T = [ 0 0 u̇T ]T

and üT = [ 0 0 üT ]T are, respectively, the orbital angular veloc-
ity and acceleration vector of the target. ρ̇ = [ ẋ ẏ ż ]T denotes 
the relative velocity vector.

2.2. The Lorentz acceleration

By assuming that the Lorentz spacecraft could be regarded as 
charged point mass and that the Earth’s magnetic field could be 
modeled as a tilted dipole corotating with Earth, the Lorentz ac-
celeration acting on the Lorentz spacecraft is given by

aL = λVr × B (5)

where λ = q/m is the specific charge of Lorentz spacecraft, with 
q and m being the charge and the mass of Lorentz spacecraft, re-
spectively. Vr refers to the velocity of Lorentz spacecraft relative to 
the local magnetic field B.

Based on the assumption of a tilted dipole, the local magnetic 
field at the Lorentz spacecraft can be described as [14]

B = [ Bx B y Bz ]T = (
B0/R3

L

)[
3
(
n0 · R0

L

)
R0

L − n0] (6)

where B0 = 8.0 ×1015 T m3 is the Earth’s magnetic dipole moment. 
The superscript 0 represents a unit vector in that direction. For 
example, the unit orbital radius vector of the Lorentz spacecraft 
can be expressed in RM frame as

R0
L = (1/R L) [ RT + x y z ]T (7)

n0 is the unit magnetic dipole moment vector, which can be de-
scribed in ECI frame as

n0 = − cosΩM sinαX0
I − sinΩM sinαY0

I − cosαZ0
I (8)
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