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This paper focuses on the development of a robust multiple model adaptive estimation (RMMAE) 
algorithm and its performance analysis. The main goal of this work is to enhance the robustness of 
the estimator against the model parameter identification error. A proof is provided that shows the 
convergence property of the proposed algorithm. Further analysis shows that the RMMAE algorithm 
guarantees a bounded energy gain from the model parameter identification error to the estimation 
error. The performance of the RMMAE is evaluated via simulations for spacecraft autonomous navigation. 
Simulation results demonstrate the effectiveness of the new algorithm compared with the extended 
Kalman filter (EKF), the unscented Kalman filter (UKF), the robust Kalman filter (RKF) and the multiple 
model adaptive estimation (MMAE).

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

When system model and noise statistic are known, the Kalman 
filter (KF) and the extended Kalman filter (EKF) are usually imple-
mented to obtain the optimal estimation of the state. However, 
in some practical applications, system models cannot be accu-
rately acquired. In the presence of model uncertainty, the filtering 
performance may be degraded. This has motivated many stud-
ies of multiple-model adaptive estimation (MMAE) [2,15,24,27,29]. 
The MMAE algorithm is an effective approach to handle problems 
with model uncertainty. In the multiple-model approach, the un-
certainty is approximated by a set of models. The MMAE uses a 
parallel bank of KFs (or EKFs) to provide multiple estimates, where 
each filter corresponds to a model in the predetermined model set. 
The final state and covariance estimate is provided by the weighted 
sum of each filter’s estimate. Under certain conditions, the weight 
associated with the correct model will converge to 1, and the other 
weight will converge to 0. In this way, the MMAE is able to choose 
the appropriate model adaptively.

During the past four decades, the MMAE algorithms have been 
successfully implemented in various applications, such as target 
tracking [17], fault diagnosis [12] and bias calibration [34]. Three 
generations of MMAE have been characterized. The first is the 
classical algorithm presented in [21]. The second is the interact-
ing multiple-model (IMM) algorithm [4] and the third is variable 
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structure multiple-model (VSMM) algorithm [16]. The classical al-
gorithm assumes that the model does not vary with time. In the 
IMM algorithm, the jumps in system model are taken into consid-
eration. The character of the VSMM algorithm is that the model set 
is assumed variable and made adaptive based on measurements.

In the MMAE, an uncertain model parameter is assumed to be-
long to a finite set. In actual engineering problems, the uncertain 
model parameter is usually known to be in a bounded region. For 
the implementation of the MMAE, a discrete model set is con-
structed by selecting a number of points in the bounded region. An 
approximation is introduced thereby. The most likely parameter in 
the discrete model set may be not exactly equal to the true model 
parameter. In this paper, the difference between the most likely 
parameter and the true parameter is called as the parameter iden-
tification error. The magnitude of the parameter identification error 
depends on the discretization level of the model set. It may be 
rather large due to a coarse discretization. In this case, the filtering 
performance would be degraded. Generally, the greater is the num-
ber of models, or the denser is the covering of the bounded region 
by discrete points, the more accurate the approximation will be. 
To achieve a fine discretization level, a large number of models are 
required. However, the use of more models increases the computa-
tional burden considerably. When the model set is extraordinarily 
large, the MMAE will be computationally infeasible.

Although the MMAE is designed to deal with the model un-
certainty, some parameter identification error remains when a dis-
crete model set is adopted to approximate the uncertain model 
parameter. The magnitude of the parameter identification error is 
related to the density of the discrete elements in the model set. 
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In this paper, the parameter identification error is seen as the re-
mained uncertainty, and the robust filtering technique is adopted 
to cope with this uncertainty. The robust filtering problem has 
been extensively studied by academic researchers. Many robust or 
H∞ filtering approaches have been developed. See [6,9,14,30,32,
35] and the references therein. Generally speaking, the robust fil-
tering approach guarantees an upper bound to the estimation error 
covariance despite the parameter uncertainties, and subsequently 
minimizing this upper bound, while the H∞ filtering theory aims 
at designing an estimator that ensures a bound on the energy gain 
from the uncertainties to the estimation error. The Riccati equation 
and linear matrix inequality approaches are frequently exploited in 
designing robust filters.

This paper proposes a robust multiple model adaptive estima-
tion (RMMAE) algorithm. In order to suppress the effect of the 
parameter identification error, the state estimation for each model 
is implemented by the robust Kalman filter (RKF) [33]. The com-
putational burden of the RKF is roughly the same as that of the 
EKF as its equation resembles that of the EKF. Theoretical proofs 
are provided that show the convergence and robustness properties 
of the novel algorithm.

The rest of the paper is organized as follows. Section 2 for-
mulates the system model and the RMMAE algorithm. Section 3
provides the proof of convergence. The robustness analysis of the 
algorithm is presented in Section 4. Section 5 illustrates the ap-
plication of the algorithm to the spacecraft autonomous naviga-
tion based on X-ray pulsars. Section 6 provides the simulation 
results including comparisons on the EKF, the UKF, the RKF and 
the MMAE. Finally, our conclusion is drawn in Section 7.

2. RMMAE algorithm

The RMMAE algorithm for nonlinear systems with parameter 
uncertainty is formulated, which is a combination of the MMAE al-
gorithm shown in [10] and the RKF algorithm shown in [33]. Here 
we assume that the discrete-time model is nonlinear with

xk = f (xk−1) + wk (1)

yk = h(xk, θ) + vk (2)

where k is the time index, xk is the state vector, f (xk−1) is a 
nonlinear function, wk is the process noise, yk is the measure-
ment, vk is the measurement noise, h(xk, θ) is a function of the 
state vector xk and the uncertain parameter vector θ . The vector 
θ is assumed to be constant throughout the filtering process. The 
nonlinear functions f (xk−1) and h(xk, θ) are assumed to be con-
tinuously differentiable. wk and vk are uncorrelated white noises 
with zero means and known covariance matrices

E

{[
wk
vk

][
wT

j vT
j

]}
=
[

Q k · δkj 0
0 Rk · δkj

]
(3)

where δkj denotes the Kronecker delta function, which is equal to 
unity for k = j and zeros elsewhere. Q k and Rk are known sym-
metric positive definite matrices. This paper focuses on the state 
estimation for the system with measurement model uncertainty, 
as uncertain parameters exist in the measurement model of the 
considered X-ray pulsar-based navigation (XNAV) system. The ap-
proach presented here is easy to be extended to estimate the state 
of the system with dynamic model uncertainty.

For the implementation of the multiple-model (MM) algorithm, 
a model set should be constructed. For the system shown in (1)
and (2), the uncertain parameter vector θ is approximated by a set 
of parameter vectors. The parameter set is formed as

θ ∈ {
θ (1), θ (2), · · · , θ (M)

}
(4)

where θ (τ ) (τ = 1, 2, . . . , M) is the predetermined element in the 
parameter set, τ is the model index, M is the total number of the 
elements. Accordingly, M filters, each depends on a predetermined 
parameter vector θ (τ ) , run in parallel to estimate the state. To deal 
with the model nonlinearity, the linearization approach is adopted 
to implement the parallel filtering. The EKF is derived with the 
assumption that the linearized system provides close approxima-
tion to the true system. The linearization approach is valid for the 
nonlinear case where the first-order Taylor series approximates the 
system model effectively. The presented algorithm is expected to 
be valid as long as the EKF is valid for the problem.

With the initial state estimate x̂(τ )
0 , the estimation error covari-

ance P (τ )
0 and the initial weight ω(τ)

0 for each filter, the RMMAE 
algorithm updates the estimate x̂(τ )

k , the covariance P (τ )

k and the 
weight ω(τ)

k recursively. Each cycle of the RMMAE algorithm con-
sists of the following three steps.

Step 1: Parallel filtering
At time k, each filter predicts and updates its state and covari-

ance individually under the assumption that the parameter vector 
θ (τ ) matches the true parameter vector θ . For the τ -th filter, the 
state estimate x̂(τ )

k and the corresponding error covariance P (τ )

k are 
calculated by

x̂(τ )

k|k−1 = f
(
x̂(τ )

k−1

)
(5)
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F T

k + Q k (6)
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P (τ )

k = [
I − K (τ )

k Hk
(
θ (τ )

)]
P (τ )

k|k−1

[
I − K (τ )

k Hk
(
θ (τ )

)]T

+ K (τ )

k R̂k K (τ )T
k (9)

where x̂(τ )

k|k−1 is the prediction of the state vector, P (τ )

k|k−1 is the 

corresponding error covariance, K (τ )

k is the gain matrix, F (τ )

k =
∂ f
∂x |

x=x̂(τ )

k−1
and H (τ )

k = ∂h
∂x |

x=x̂(τ )

k|k−1
are the Jacobi matrices. The tun-

ing parameter γ , which has been used for the design of the H∞
filter in Refs. [6,32,35], gives an upper bound of the energy gain 
from the uncertainties to the estimation error. If an appropriate 
parameter γ is found to be such that P (τ )

k > 0, the estimation of 
an H∞ filter will remain bounded. In practice, the parameter γ
can be set as a large positive constant. R̂k ≥ Rk is a symmetric 
and positive definite matrix, which is used to take into account the 
error between the most likely parameter vector in the parameter 
set and the real parameter vector. Section 4 provides a heuristic 
method for the design of R̂k .

Step 2: Weight update
The weights of the state estimates obtained from the individual 

filters are calculated from the residuals ỹ(τ )

k and the corresponding 

covariance Ω̂
(τ )

k . The weight for the τ -th filter is calculated as

ω
(τ)

k = ω
(τ)

k−1Λ
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k∑M
τ=1 ω

(τ)
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(τ)

k

(10)

where
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