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Present paper investigates the influences of the fluid viscosity and acoustic impedance of the wall on 
the isentropic acoustic wave propagating along a shear flow contained in a circular pipeline. On the 
assumption of an axisymmetric acoustic wave, mathematical formulation with respect to the acoustic 
velocity is deduced from the conservation of mass and momentum. Numerical calculation is processed 
through an iterative procedure based on the Fourier–Bessel theory. Comparisons of the wave attenuation 
and measurement performance of an ultrasonic flow meter are addressed among the rigid, steel and 
aluminum walls. Meanwhile, the differences between the laminar and turbulent flow are provided. In 
conclusion, parametric analyses of the influence of the acoustic impedance on the wave attenuation and 
ultrasonic measurement performance are given.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Propellant gauging requirements for the management of fluid 
in the aerospace applications and the resupply of a wide variety of 
fluids to the on-orbit platforms have stimulated intensive research 
on the novel propellant gauging methods [25,5]. The ultrasonic 
flow meter can provide non-invasive no-moving-parts construction, 
offer high potentials for measuring rapidly varying flow velocities 
and impose no impedance on the flow [19]. Recently, Matthijsen 
and Put [20] developed an ultrasonic flow meter for the space ap-
plication under ESA development program.

Based on the inviscid fluid assumption, Lechner [18] investi-
gated the effect of the shear mean flow on the performance of 
the ultrasonic flow meter, Willatzen [29] made constructive com-
ments on the work of Lechner. Furthermore, comparisons of differ-
ent mathematical models of wave propagation in the inviscid fluid 
were carried out by Willatzen [31]. The effects of the temperature 
[30,6] and the acoustic impedance of the wall [32] on the mea-
surement performance of the ultrasonic flow meter were analyzed 
thereafter.

* Corresponding author. Tel.: +86 0731 84574812; fax: +86 0731 84512301.
E-mail addresses: literature.chen@gmail.com (Y. Chen), yiyong_h@sina.com

(Y. Huang), chenxiaoqian@nudt.edu.cn (X. Chen), baiyuzhu@gmail.com (Y. Bai), 
xdt1010@126.com (X. Tan).

In the above-mentioned contributions, the ignorance of the 
fluid viscosity [10] and acoustic absorption of the wall [3,12,26]
leads to the failure of the description of the wave attenuation. In 
the rigid-walled pipeline, Peat [23] was the first to analyze the fun-
damental acoustic mode in the perfect gas considering the effects 
of the viscous dissipation and thermal conduction in the pres-
ence of a parabolic mean flow. In the case of a stationary liquid, 
Elvira-Segura [11] adopted the isentropic acoustic assumption ne-
glecting the effect of the thermal conduction. Recently, the authors 
[7] expanded the research of the isentropic acoustic wave to the 
condition that a uniform mean flow is present.

If the wall is not rigid, the corresponding acoustic impedance 
may alter the features of the acoustic wave. In the framework of 
an inviscid fluid, the Ingard–Myers boundary condition [22] was 
widely used to handle the influence of the acoustic impedance 
on wave propagation. However, such method neglected the viscous 
dissipation in the fluid. By analyzing the acoustic wave propagat-
ing in a viscous boundary layer, different improved models of the 
boundary condition were proposed by Brambley et al. [4], Rienstra 
and Darau [27], and Auregan et al. [2,24], to mention a few. Al-
though the viscous dissipation was taken into consideration at the 
viscous boundary layer, the governing equation of wave propaga-
tion was established in the framework of the inviscid fluid.

Present paper tends to simultaneously analyze the effects of 
the acoustic impedance and fluid viscosity on wave propagation 
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Fig. 1. (Color online.) Configuration of the problem in the circular cylindrical 
pipeline.

in the presence of a shear mean flow (laminar and turbulent flow). 
Theoretical analysis is based on the Fourier–Bessel theory [28,17]
which was used in the previous study [6–8]. As particular atten-
tion is imposed on the acoustic features in the liquid flow, the 
isentropic acoustic assumption, on the neglect of the thermal con-
duction adopted from Elvira-Segura [11] and Chen et al. [7], is 
presumed. Furthermore, the numerical study concentrates on the 
wave attenuation and measurement performance of the ultrasonic 
flow measurement.

2. Mathematical description of problem

In this section, the convected wave propagation through a shear 
mean flow is investigated in the circular cylindrical coordinate sys-
tem as shown in Fig. 1. r, θ , and z are the radial, circumferential, 
and axial directions respectively. R is the pipeline radius and v0(r)
is the shear flow profile. Z represents the acoustic impedance of 
the wall.

In what follows, an acoustic wave is assumed to propagate in 
a steady viscous fluid with a shear mean flow. The disturbances 
to the fluid pressure (p), flow velocity (v) and density (ρ) are 
supposed to be small enough to satisfy the linear approximations. 
With no effect of a swirl flow, the present study concentrates on 
the characteristics of the axisymmetric acoustic wave under the in-
fluences of the fluid viscosity and acoustic impedance of the wall. 
On the neglect of the thermal conduction, the acoustic wave is 
simplified to be isentropic.

2.1. Governing equation

In the case of an isentropic acoustic wave, mathematical formu-
lations start from the conservation of mass and momentum while 
the energy conservation is omitted

∂ρ

∂t
+ ∇ · (ρv) = 0,

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + η∇2v +

(
ζ + η

3

)
∇(∇ · v), (1)

where η and ζ are the coefficients of the shear and bulk viscosity 
[11]. As in the literature, the disturbances to the fluid viscosi-
ties due to wave propagation are not considered [11,7]. Thus, the 
physical variables (density, velocity and pressure) are divided into 
the time-averaged mean quantities (ρ0, v0 and p0) and the first-
order acoustic quantities (ρ ′ , v′ and p′). On the assumption of 
the uniform steady density (ρ0 = constant) and shear mean flow 
(v0 = [0, 0, v0(r)] in the cylindrical coordinate as shown in Fig. 1), 
one obtains

∇ · v0 = 0,

ρ0(v0 · ∇)v0 = −∇p0 + η∇2v0 +
(

ζ + η

3

)
∇(∇ · v0) = 0. (2)

Due to the linear acoustic approximations, the Taylor’s first-order 
expansions of Eq. (1) can be written by

∂ρ ′

∂t
+ (v0 · ∇)ρ ′ + ρ0∇ · v′ = 0, (3)

ρ0

[
∂v′

∂t
+ (v0 · ∇)v′ + (

v′ · ∇)
v0

]

= −∇p′ + η∇2v′ +
(

ζ + η

3

)
∇(∇ · v′). (4)

The assumption of an isentropic acoustic wave leads to the con-
straint of p′ = c2

0ρ
′ where c0 is the adiabatic sound speed which 

is assumed to be constant. Eq. (3) then may be simplified to

∂ p′

∂t
+ (v0 · ∇)p′ + ρ0c2

0∇ · v′ = 0. (5)

As the acoustic perturbations are considered to be monochro-
matic and axisymmetric, the fluctuating quantities can be partly 
expressed as exp[i(ωt − k0 K z)], where ω, K and k0 = ω/c0 are 
the angular frequency, the dimensionless axial wavenumber and 
the inviscid total wavenumber respectively. To give a dimensionless
expression, the local Mach number (M(r) = v0(r)/c0) is introduced 
to describe the shear flow profile, then Eqs. (5) and (4) can be de-
duced to

iω(1 − K M)p′ + ρ0c2
0∇ · v′ = 0

⇒ p′ = − ρ0c2
0

iω(1 − K M)
∇ · v′, (6)

iω(1 − K M)v′ + (
v′ · ∇)

v0

= −∇p′

ρ0
+ η

ρ0
∇2v′ + 1

ρ0

(
ζ + η

3

)
∇(∇ · v′). (7)

Substituting Eq. (6) into Eq. (7) yields

iω(1 − K M)v′ + (
v′ · ∇)

v0

= ∇
[

c2
0

iω(1 − K M)

]
∇ · v′ + η

ρ0
∇2v′

+
[

c2
0

iω(1 − K M)
+ 1

ρ0

(
ζ + η

3

)]
∇(∇ · v′). (8)

In the case of an axisymmetric acoustic wave, the circumferen-
tial component of the acoustic velocity can be neglected, then the 
acoustic velocity can be written as v′ = [v ′

r, v ′
z]. Expanding Eq. (8)

in the cylindrical coordinate system [1] yields

iωR2(1 − K M)v ′
r

= c2
0 K

iω(1 − K M)2

dM

dx

[
1

x

∂

∂x

(
xv ′

r

) − ik0 R K v ′
z

]

+ η

ρ0

[
∂

x∂x

(
x
∂v ′

r

∂x

)
− 1

x2
v ′

r − k2
0 R2 K 2 v ′

r

]

+
[

c2
0

iω(1 − K M)
+ 1

ρ0

(
ζ + η

3

)]
∂

∂x

×
[

1

x

∂

∂x

(
xv ′

r

) − ik0 R K v ′
z

]
, (9)

iωR2(1 − K M)v ′
z + c0 R

dM

dx
v ′

r

= η

ρ0

[
∂

x∂x

(
x
∂v ′

z

∂x

)
− k2

0 R2 K 2 v ′
z

]

− ik0 R K

[
c2

0

iω(1 − K M)
+ 1

ρ0

(
ζ + η

3

)]

×
[

1

x

∂

∂x

(
xv ′

r

) − ik0 R K v ′
z

]
, (10)
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