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In this paper, the robust recursive filtering problem is studied for a class of uncertain systems with 
finite-step correlated noises, stochastic nonlinearities and autocorrelated missing measurements. The 
correlated noises and stochastic nonlinearities are simultaneously considered, where process noises 
and measurement noises are arbitrary finite-step autocorrelated and cross-correlated. The missing 
measurements appear in a random way which is governed by missing rates obeying a certain probability 
distribution. The autocorrelation of missing rates, for the first time, is introduced to reflect the interaction 
of network bandwidth at adjacent sampling times. The aim of the addressed filtering problem is to design 
an unbiased robust recursive filter such that, for the uncertain systems, the filtering error is minimized 
at each sampling time. It is shown that the filter gain is obtained by solving a recursive matrix equation. 
A numerical simulation example is presented to illustrate the effectiveness of the proposed algorithm.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the past few decades, Kalman filtering algorithm has at-
tracted much attention for its simple structure and good perfor-
mance [1], and it has been widely used in the field of engineering 
such as communication, navigation and target tracking [4,12,21]. 
However, when system model contains parameter uncertainty, the 
filtering performance deteriorates inevitably. In order to deal with 
this problem, much work has been done to design robust filter 
against the adverse influence of parameter uncertainty [2,3,5,6,14,
25,26,33]. The results for systems with random parameter uncer-
tainty are reported in [3,14,25]. In [2], the robust Kalman filtering 
problem is investigated for uncertain state delay systems with ran-
dom observation delays. Furthermore, H∞ filtering algorithms are 
proposed in [5,6,26] for discrete uncertain systems with bounded 
perturbation, and the H∞ filter is designed in [33] for continuous-
time linear systems with parameter uncertainty that belongs to a 
given convex bounded polyhedral domain.

The correlated noises are encountered in systems such as the 
radar tracking system where the process noises and measurement 
noises are cross-correlated [24]. The systems with correlated noises 
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have received constant attention and a series of results have been 
published [22,23,30]. As a typical case, the one-step correlation 
is assumed to reflect the interaction of noises at different sam-
pling times, which causes the correlation between system state 
and noises [7,10,16]. Ref. [8] proposes robust filter for uncertain 
dynamical system with finite-step correlated process noises. The 
optimal robust non-fragile Kalman-type recursive filtering is pro-
posed in [9] for systems with finite-step autocorrelated measure-
ment noises.

The nonlinear phenomena are common in practice. If the sys-
tem involves serious nonlinearities, it is difficult to design a filter 
with good performance only considering the linear model. There-
fore, it is necessary to draw the nonlinear analysis into the filter 
design [5,11,20,26,31]. In recent years, the stochastic nonlinearities, 
containing white noises in the nonlinear functions, have attracted 
many research interests. For example, the robust H∞ finite-horizon 
filtering problem is solved in [6] for uncertain nonlinear stochas-
tic systems; Ref. [29] is concerned with the filtering problem for 
stochastic nonlinear time-delay systems; Ref. [32] proposes state 
estimator satisfying the criteria to suppress stochastic nonlineari-
ties; the extended Kalman filtering problem is investigated in [15]
for stochastic nonlinear systems. However, up to now, the state es-
timation for systems with stochastic nonlinearities as well as the 
arbitrary finite-step autocorrelated and cross-correlated noises has 
not received adequate research due probably to its complex deriva-
tion.
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In sensor network systems, the missing measurements fre-
quently appear and generally become one of the major constraints 
for the system performance [18,27]. When communication is not 
established perfectly due to limited bandwidth of network, the 
missing measurements appear with a random missing rate for each 
measurement channel. The missing rates in [2,3,5,14] are regarded 
as Bernoulli random variables that measurements are completely 
received or missed. The filtering problem for complex network 
systems with Bernoulli missing rates and time delays is studied 
in [34]. With further extension, in [6,16,29], the missing rate for 
each sensor is governed by an individual random variable obeying 
a certain probability distribution that the Bernoulli distribution is 
a special case. On the other hand, the measurement missing rates 
can be autocorrelated at consecutive sampling times, since net-
work congestion appears at one sampling time and the bandwidth 
of network need several subsequent sampling times to recover. 
Unfortunately, this phenomenon has not received adequate atten-
tion in the existing literature, not to mention the situation when 
parameter uncertainty, finite-step correlated noises and stochastic 
nonlinearities simultaneously appear in the system.

Based on the above discussion, in this paper, we aim to in-
vestigate a class of uncertain systems with finite-step autocor-
related and cross-correlated noises, stochastic nonlinearities and 
autocorrelated missing measurements. The expression of system 
uncertainties covers both dependent and independent parameter 
perturbations. The stochastic nonlinearities are defined by mean 
properties and represent several kinds of well-studied nonlinear 
functions. The process noises and measurement noises are ar-
bitrary finite-step autocorrelated and cross-correlated, where the 
universal assumptions are capable of covering any finite-step cases 
of noise correlation. The missing measurements are determined 
by missing rates obeying a certain probability distribution, and 
the additional autocorrelation of missing rates represents the in-
teraction of fluctuated network bandwidth at adjacent intervals. 
The main contributions of this paper are emphasized as follows: 
1) the assumptions of arbitrary finite-step autocorrelation and 
cross-correlation are universal; 2) the autocorrelation of missing 
rates, for the first time, is introduced to describe the interaction of 
network bandwidth; 3) the stochastic nonlinearities are included 
in system model, thereby better reflecting the reality; 4) the pro-
posed robust recursive filtering algorithm is unbiased and suitable 
for online applications.

The remainder of this paper is organized as follows. In Sec-
tion 2, the filtering problem is formulated for a class of uncertain 
systems with finite-step correlated noises, stochastic nonlinearities 
and autocorrelated missing measurements. The main results of this 
paper are showed in Section 3. In Section 4, a numerical simulation 
example is presented to illustrate the effectiveness of the novel al-
gorithm. This paper is concluded in Section 5.

Notations. The notations in this paper are standard. Rn and Rn×m

denote the n-dimensional Euclidean space and the set of all n × m
matrices, respectively. E{x} is the expectation of random variable x
and Cov[α, β] denotes the covariance of random vectors α and β . 
P T and P † are the transpose and Moore–Penrose pseudo inverse of 
matrix P . P > 0 means P is real, symmetric and positive definite. 
tr(·) stands for the trace of a matrix and diag(a1, . . . , ar) denotes 
a diagonal matrix whose diagonal entries are a1, . . . , ar . I and 0
represent the identity matrix and the zero matrix with appropri-
ate dimensions, respectively. If the dimensions of matrices are not 
explicitly stated, it is assumed to be compatible for algebraic oper-
ations.

2. Problem formulations

In this paper, we consider the following class of uncertain sys-
tems with finite-step correlated noises, stochastic nonlinearities 
and autocorrelated missing measurements:

xk+1 = Akxk + f (xk, εk) + Bkωk (1)

yk = ΞkCkxk + Dk vk (2)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ak = Ak +
m∑

i=1

Ai,kζi,k

Bk = Bk +
m∑

i=1

Bi,kζi,k

Ck = Ck +
m∑

i=1

Ci,kζi,k

Dk = Dk +
m∑

i=1

Di,kζi,k

(3)

xk ∈ R
n is the state to be estimated, yk ∈ R

q is the measure-
ment output, ωk ∈ R

p is the process noise and vk ∈ R
r is the 

measurement noise. Ak ∈ R
n×n , Bk ∈ R

n×p , Ck ∈ R
q×n , and Dk ∈

R
q×r are known deterministic matrices, εk is a zero-mean white 

noise uncorrelated with other noises. Random sequences ζi,k (i =
1, 2, . . . , m) are introduced for describing the parameter uncer-
tainty, and they are zero-mean with E{ζi,kζ j,l} = δi, jδk,l , where δ
is the Dirac Delta function. Ai,k ∈ R

n×n , Bi,k ∈ R
n×p , Ci,k ∈ R

q×n , 
and Di,k ∈ R

q×r are known and signify the directions of parameter 
perturbations.

The initial state x0, process noise ωk , and measurement noise 
vk have following statistical properties:

E{x0} = x0, E
{
(x0 − x0)(x0 − x0)

T } = P0 (4)

E{ωk} = 0, E{vk} = 0 (5)

E
{
ωkω

T
l

} = Q kδk,l +
gk∑

t=1

Q k,l(δk,l+t + δk,l−t) (6)

E
{

vkν
T
l

} = Rkδk,l +
gk∑

t=1

Rk,l(δk,l+t + δk,l−t) (7)

E
{
ωk v T

l

} = Skδk,l +
gk∑

t=1

Sk,l(δk,l+t + δk,l−t) (8)

where P0 > 0, Q k > 0 and Rk > 0, gk represents the step number 
of correlation, Q k,l , Rk,l and Sk,l are known matrices with appro-
priate dimensions.

Remark 1. The process noise ωk and measurement noise vk are 
gk-step autocorrelated and cross-correlated. In practice, the pro-
cess noise ωk and the measurement noise vk maybe have respec-
tive correlated step numbers. For example, ωk and vk are f ω

k -step 
forward, bω

k -step backward and f v
k -step forward, bv

k -step back-
ward autocorrelated respectively, and they are f ω,v

k -step forward, 
bω,v

k -step backward cross-correlated. Then, the step number gk can 
be determined by max{ f ω

k , bω
k , f v

k , bv
k , f ω,v

k , bω,v
k }. Therefore, the 

more general assumptions (6)–(8) are applicable to the noises with 
arbitrary finite-step autocorrelation and cross-correlation, and can 
cover the various attributes of correlations concerned in the ma-
jority of existing literature.
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