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In this paper the data fusion problem for asynchronous, multirate, multisensor linear systems is studied. 
The linear system is observed by multiple sensor systems, each having a different sampling rate. Under 
the assumption that the state space model is known at the scale of the highest time resolution 
sensor system, and that there is a known mathematical relationship between the sampling rates, 
a comprehensive state space model that includes all sensor systems is presented. The state vector is 
estimated with a neural network that fuses the outputs of multiple Kalman filters, one filter for each 
sensor system. The state estimate is shown to perform better than other data fusion approaches due to 
the new neural network based sensor fusion approach.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

State estimation is the process of inferring the state of a sys-
tem from indirect and uncertain observations [1]. Using multiple 
sensor systems instead of one single sensor system increases the 
performance of estimation due to the use of complementary in-
formation and increased reliability [24]. Data fusion is a process 
in which data from different sensor systems, observing the same 
system, are combined to obtain better estimation accuracy [8]. For 
example, in image processing, one scene may be captured by dif-
ferent cameras with different sampling rates [18]. In earlier data 
fusion work, the sensor systems observing the process had equal 
sampling rates, which led to fairly simple data fusion problem with 
limited applicability [13]. In reality, different sensor systems often 
use different sampling rates, and the sampling rates are often asyn-
chronous [21].

Various methods have been presented to fuse data from multi-
ple sensor systems. Among them, Carlson presents a method based 
on Kalman filtering to fuse data from sensor systems having the 
same sampling rate [3,4]. Kazerooni et al. developed a federated 
ensemble Kalman filter algorithm [12]. Other popular state estima-
tors, such as particle filters [14] and H-infinity filters [10], have 
been used. Soft computing methods, such as fuzzy logic [17], ge-
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netic algorithms [15], and neural networks [6], have also been 
used. Wavelet methods have been developed to fuse data from dif-
ferent sensor systems with different sampling rates [5,23]. All of 
these works have some limitations on the sampling times of the 
sensor systems and on the relationship between the different sam-
pling rates.

Yan et al.’s algorithm is applicable to systems in which the sen-
sor system sample rates are asynchronous with any known integer 
sampling rate ratio [22]. In their work the limitation on the sam-
pling rate ratio is relaxed relative to previous research; that is, the 
ratio between sampling rate ratios is assumed only to be a positive 
integer. The system model is known only at the finest sampling 
rate, and they extend the federated Kalman filter [3] to fuse data 
from the multiple sensor systems.

This paper uses Yan et al.’s method [22] to transform the multi-
rate multisensor system into a single-rate multisensor model. The 
states of the new system are estimated with a standard Kalman 
filter, one filter for each sensor system. Then, instead of using 
a classical method such as a federated Kalman filter, a neural net-
work fuses the estimated state vectors from each Kalman filter. The 
results are shown to be more accurate than the method of [22]. 
The results of this paper use the same sampling rate assumptions 
as in [22]; therefore, the improved results in this paper are due to 
the neural network based sensor fusion that is proposed here.

This paper is organized as follows. In Section 2, multirate sys-
tem modeling is reviewed. In Section 3, data fusion and state esti-
mation using the new combination of Kalman filters and a neural 
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network is presented. Section 4 presents simulation results, and 
Section 5 provides a conclusion.

2. Modeling a multirate system

A linear dynamic system with N sensor systems is described as 
follows [22]:

x(N,k + 1) = A(N,k)x(N,k) + w(N,k) (1)

z(i,k) = C(i,k)x(i,k) + v(i,k), i = 1,2, . . . , N (2)

The state space model is valid at the highest sensor system sam-
pling rate, which is denoted by N . Vector x(N, k) ∈ Rn×1 is the 
state variable at the k-th time step at time scale N , which is 
the same time scale as the highest time resolution sensor sys-
tem. The system matrix A(N, k) ∈ Rn×n . Vector x(i, k) ∈ Rn×1 is the 
state variable at the k-th time step at time scale i, and is gen-
erally different than x( j, k) for j �= i because time scales i and j
are different. Note that we do not have a system model for x(i, k)

for i < N . There are N sensor systems, with the i-th sensor sys-
tem output at the k-th time step of the i-th time scale denoted 
by z(i, k), and with C(i, k) ∈ Rqi×n . The system and measurement 
noises are independent, white, and zero-mean:

E
{

w(N,k)w T (N, l)
} = Q (N)δkl (3)

E
{

v(i,k)v T ( j, l)
} = R(i)δi jδkl (4)

Sensor system N has the highest sampling rate, and it is the 
only sensor system that uses uniform sampling. The other sen-
sor systems have lower, and possibly non-uniform, sampling rates. 
The i-th sensor system sample rate is denoted Si . The sampling 
rates of the sensor systems satisfy the following limitation:

Si = Si+1/ni, i ∈ [1, N − 1] (5)

where each ni is a known positive integer. The ni parameters are 
system-specific parameters that depend on the sensor system con-
figuration. The determination of the ni parameters are part of the 
system modeling problem, just as the determination of the model 
parameters in (1)–(4) are part of the system modeling problem.

This relationship given by (5) implies that the highest sensor 
system frequency is a fixed integer multiple of each of the other 
sensor system frequencies. There are many factors that affect sam-
ple rates in multisensor systems, and the assumption of (5) is 
restrictive. However, (5) is a reasonable model for many multisen-
sor systems because data from multisensor systems are often fused 
in a central processor. The central processor often has a fixed rate 
at which it retrieves data from the multiple sensor systems. There-
fore, (5) is often enforced by the architecture of the multisensor
system. This is the case in many systems, including navigation sys-
tems [7], industrial systems [2], and transportation systems [11], 
and many others.

The initial state x(N, 0) is random with known mean x0 and 
known covariance P0, and is independent of the system and mea-
surement noises.

An example of a multirate multisensor system is shown 
in Fig. 1. In this figure, there are three sensor systems (N = 3). 
The dynamic system is modeled at the rate S3, which is the rate 
of the highest-rate sensor system, or the third sensor system. The 
second sensor system has sample rate S2 = S3/2. The first sensor 
system has sample rate S1 = S2/3.

The problem in this section is to find an approximate system 
model that applies to all sensor systems, under the assumption 
that the system presented in (1) is applicable only for the highest 
sampling rate N . In another words, our goal is to reformulate the 
multirate multisensor system as a single-rate multisensor system. 

Fig. 1. Example of a multirate, multisensor system. The highest sample rate is sam-
pling scale 3, which is uniform and includes 6 samples per data block. The two 
lower sample rates are asynchronous, but are constrained to be related to the high-
est sample rate by a known integer. This figure is adapted from [22].

Then, in the next section, we will deal with the multisensor data 
fusion problem by using one sampling rate for all sensors, which 
will be more tractable than the original problem. Based on [22] we 
approximate the state at time scale k as an average of the state at 
the highest time scale. That is,

x(i,k) ≈ 1

M̃i

M̃i−1∑
m=0

x(N,kM̃i − m)

M̃i =
N−1∏
j=1

n j (6)

for i ∈ [1, N − 1]. An example will be given later in this section. 
This approximation gives the following state space model, which 
applies to all sensor system sampling rates:

XN(k + 1) = AN(k)XN(k) + W N(k) (7)

Zi(k) = Ci(k)XN(k) + V i(k) (8)

for i ∈ [1, N − 1], where

XN(k) =

⎡
⎢⎢⎢⎣

x(N, (k − 1)M + 1)

x(N, (k − 1)M + 2)
...

x(N,kM)

⎤
⎥⎥⎥⎦ (9)

AN(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · A(N,kM)

0 0 · · · A(N,kM + 1)A(N,kM)
...

...
. . .

...

0 0 · · ·
0∏

l=M−1

A(N,kM + l)

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

Zi(k) =

⎡
⎢⎢⎢⎣

z(i, (k − 1)Mi + 1)

z(i, (k − 1)Mi + 2)
...

z(i,kMi)

⎤
⎥⎥⎥⎦ (11)

Ci(k) = 1

M̃i
diag

{
C
(
i, (k − 1)Mi + 1

)
I M̃i

C
(
i, (k − 1)Mi + 2

)
I M̃i

. . . C(i,kMi)I M̃i

}
(12)

Mi =
i−1∏
j=0

n j

M = MN

M̃N = 1

n0 = 1 (13)
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