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The harmonic balance method has seen an increasing popularity in the solution of time-periodic 
problems because of its computational efficiency and its ability to model dynamically nonlinear fluid 
phenomena. In addition, the mathematically steady nature of this technique makes it ideal for adjoint 
sensitivity analysis of unsteady problems. In this work, a novel optimization framework consisting of 
three components: a harmonic balance based unsteady cascade flow solver, an accompanying adjoint 
solver and a quasi-Newton optimization solver; have been developed. The discrete adjoint solver is 
obtained with the aid of an automatic differentiation tool, TAPENADE. To demonstrate the efficiency and 
accuracy of the method, we present shape optimization and adjoint sensitivity computations for a two-
dimensional compressor cascade. Steady inverse design of this cascade is performed to investigate the 
effects of two shape parameterization methods, namely Hicks–Henne bump functions and mesh points. 
Shape optimization is performed to improve the aerodynamic damping characteristics of a vibrating 
cascade row. In addition, the unsteady adjoint technique is used to determine the frequency of vibration 
that would drive the system to limit-cycle, which defines the stability limit of the cascade.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

With the advancement of computer technology and compu-
tational fluid dynamic (CFD) algorithms in the past couple of 
decades, computational design optimization has become a promi-
nent research emphasis. Traditionally, investigators have used two 
families of optimization techniques, namely stochastic and deter-
ministic methods in aerodynamic design optimization. Examples of 
stochastic methods include genetic algorithms (GAs) and simulated 
annealing (SA) algorithms, which are capable of determining global 
minimum points and are easy to implement in well-established 
CFD codes [50]. However, these approaches tend to be computa-
tionally expensive as they generally require a very large number 
of CFD computations. Gradient-based deterministic optimization 
techniques, on the other hand, can be more difficult to develop 
but are generally more efficient. In the gradient-based approach, 
which includes techniques like tangent-linear and adjoint, it is crit-
ical to evaluate the sensitivity (of an objective function to design 
variables) in an accurate and efficient manner. When the num-
ber of design variables is large, the adjoint (reverse) method is 
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preferred due to its efficiency compared to the tangent-linear (for-
ward) method.

The adjoint method was first used in fluid mechanics by Piron-
neau [37]. Later on, Jameson [22] extended the adjoint method 
to Euler-based airfoil and wing shape optimization. Following 
Jameson’s pivotal work, many investigators have adopted this tech-
nique in the field of aerodynamic shape optimization [1,22,25,27,
31,35,42]. In his original work, Jameson derived the adjoint equa-
tions analytically and then discretized them to compute the sen-
sitivities. That approach is referred to as the continuous adjoint 
method. In the other approach, which is called the discrete ad-
joint method, the governing equations (Navier–Stokes or Euler) are 
discretized first and then adjoint solver is derived from the CFD 
solver. Anderson and Bonhaus [1] and Nielsen and Anderson [35]
hand-coded a discrete viscous adjoint solver for sensitivity analy-
sis. In general, linearization of the turbulence models by hand is 
very difficult and time-consuming and thus the majority of the 
early adjoint researches, either continuous or discrete, have as-
sumed the turbulent viscosity to be “frozen” [1,25,35]. Recently, 
Lyu et al. [29] employed an automatic differentiation tool, TAPE-
NADE [17], to develop a discrete adjoint solver for the RANS equa-
tions in which the Spalart–Allmaras turbulence model [40] was 
used. In that work, they compared the accuracy of sensitivities ob-
tained by frozen turbulence and “full” turbulence and concluded 
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that full turbulence adjoint computations are needed for more ac-
curate results.

Generally, the adjoint methods propagate the sensitivities of 
the objective function to design variables by a series of calcu-
lations, which are performed in the reverse order of the nomi-
nal CFD computations. During these calculations, the gradients at 
that particular step are propagated backward, and the final gradi-
ent information will be a combination of these propagated partial 
derivatives. The reverse adjoint calculation normally requires the 
entire time history of the flow computation to be stored, which 
may be extremely costly for a time-accurate computation. Because 
of this, the majority of the research on the application of the ad-
joint sensitivities in aerodynamic design optimization has focused 
on steady flows. Recently, there have been attempts to apply the 
method to unsteady time-domain [33,47]. In order to minimize the 
storage requirements of the time-accurate adjoint computations, 
a variety of modifications were developed. For example, Wang et 
al. [48] developed a checkpointing algorithm, which significantly 
reduces the data storage at the expense of increased computa-
tional cost. Nadarajah and Jameson [33] proposed to store only 
one period of the solution in their adjoint computation. Beran et 
al. [3] developed a technique in which they used proper orthogo-
nal decomposition (POD) to compress the history of time-accurate 
computations greatly decreasing the storage requirements.

In the past decade, the mixed-time/frequency domain harmonic 
balance method of Hall et al. [16] has been used for the solu-
tion of various time-periodic problems [7–9,14,15,20,41]. In this 
approach, the time-periodic flow field is modeled as a number of 
sub-time level solutions that span the entire temporal period of 
excitation. These sub-time level solutions, which are solved simul-
taneously, are coupled through a pseudo-spectral approximation 
of the time-derivative term in the Euler (or the Navier–Stokes) 
equations. With the use of the pseudo-spectral operator, the ex-
plicit time dependence in the governing equations vanishes and 
the problem becomes mathematically steady. Therefore, compared 
to a time-accurate adjoint approach, the harmonic balance method 
has the added advantage of not having to store any time history 
of the solution. In addition, the adjoint harmonic code can use 
convergence acceleration techniques (multigrid, etc.) to speed-up 
convergence. Typically, the convergence rates for the nominal and 
the discrete adjoint codes should be identical. Because of these 
added advantages, investigators have recently developed adjoint 
solvers based on nonlinear harmonic balance codes [30,34,42]. For 
example, Thomas et al. [42] developed a discrete adjoint harmonic 
balance solver with the aid of a commercial automatic differentia-
tion (AD) tool, TAF [12,13] and performed a sensitivity analysis for 
a pitching NLR 7301 airfoil. Mader et al. [31] used TAPENADE and 
developed a discrete adjoint solver, which they called ADjoint. The 
resulting set of linear equations were assembled into a linear sys-
tem, which was then solved using the preconditioned GMRES [39]
routine of the PETSc [2] computational framework.

The difficulty in developing the adjoint form of the non-
reflecting and the mixing plane boundary conditions has hindered 
its application for turbomachinery flows until recently [11,27,28,
32,43–46]. Frey et al. [11] described a systematic approach to de-
velop a discrete adjoint solver for turbomachinery optimization 
including the adjoint boundary conditions for the conservative 
mixing planes. Marta et al. [32] discussed physical meaning of 
steady adjoint solutions for turbomachinery. Luo et al. [28] pre-
sented optimization of the NASA Rotor 67 fan by using a three-
dimensional viscous adjoint solver and redesigned the blades for 
three different operating conditions; namely, near peak efficiency, 
near stall, and near choke. Walther and Nadarajah [44] performed a 
constrained aerodynamic shape optimization for a transonic com-
pressor in a multistage environment. In the literature to date, the 
turbomachinery design work using adjoint techniques were mostly 

limited to steady flows. A few notable exceptions that applied the 
technique to unsteady flows are the work of Campobasso et al. [4], 
Duta et al. [6] and He and Wang [18]. In two related works, Cam-
pobasso et al. [4], and Duta et al. [6] applied the adjoint method 
to a time-linearized turbomachinery flow solver and managed to 
reduce the forced response blade vibration by tailoring the shape 
of the incoming wakes, which can be related to the blade profile 
of the upstream row. More recently, He and Wang [18] performed 
an adjoint-based aerodynamic/aeroelastic design optimization of 
turbomachinery blades. Their method was based on a simplified 
nonlinear harmonic method and the optimization resulted in im-
proved flutter characteristics.

In this work, we consider gradient-based shape optimization for 
improved aeroelastic properties of compressor cascades. Particu-
larly, we optimize the blade shapes so as to maximize the aero-
dynamic damping of a vibrating cascade. Our technique, in some 
sense, is similar to the method of He and Wang except that we use 
the fully nonlinear time-spectral harmonic balance technique of 
Hall and that we use a discrete adjoint approach to determine the 
sensitivities for shape optimization. For two-dimensional inverse 
design problems, a new method is proposed where mesh points 
are used as design variables to provide a complete design basis and 
is shown to be very efficient in combination with a quasi-Newton 
optimization method. In addition, the unsteady adjoint technique 
is used to determine the frequency of vibration that would drive 
the system to limit-cycle oscillations (LCO), which defines the sta-
bility limit of the cascade. These studies constitute the novelty of 
this work. To obtain the discrete adjoint solver, we use the non-
commercial automatic differentiation compiler TAPENADE. The ad-
joint solver is then coupled to an optimization algorithm for shape 
optimization or LCO frequency computation.

2. Methodology

2.1. Harmonic balance technique

The harmonic balance technique used herein has been exten-
sively reported in earlier work (for example, see Refs. [16,20]). 
However, the salient features of the technique are repeated here 
for completeness. We consider two-dimensional Euler equations 
(the method can easily be extended to Navier–Stokes equations) 
written in strong conservation form as

∂

∂t

¨

A

U dA+
ˆ

S

[F,G] · n dS = 0. (1)

In the above equation, U = {ρ, ρu, ρv, ρE}T is the vector of con-
servation variables, and F, G are the flux vectors given as

F =
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, G =
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ρv − ρ ġ
ρuv − ρuġ

ρv2 + p − ρv ġ
ρvh − ρE ġ
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⎪⎪⎭

,

where ḟ and ġ are the x and y components of the unsteady grid 
motion velocity.

Here, it is assumed that the cascade blades (and the com-
putational grid) vibrate harmonically with a frequency ω. Be-
cause the flow is temporally periodic, the conservation variables 
may be approximated as a truncated Fourier series in time with 
spatially varying coefficients, which are computed and stored at 
2N + 1 equally spaced points over one temporal period. Therefore, 
the Fourier coefficients and sub-time level solutions are related 
through a set of discrete transformation matrices, i.e.

Û = EU∗; U∗ = E−1Û, (2)
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