
Aerospace Science and Technology 39 (2014) 513–522

Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Inverse airfoil design using variable-resolution models and 

shape-preserving response prediction

Leifur Leifsson ∗, Slawomir Koziel

Engineering Optimization & Modeling Center, School of Science and Engineering, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 October 2013
Received in revised form 27 May 2014
Accepted 31 May 2014
Available online 3 July 2014

Keywords:
Inverse airfoil design
Target pressure distribution
Surrogate models
Variable-resolution modeling
Response surface modeling

The paper presents a computationally efficient surrogate-based optimization algorithm for the inverse 
design of transonic airfoils. Our approach replaces the direct optimization of an accurate, but computa-
tionally expensive, high-fidelity airfoil model by an iterative re-optimization of two different surrogate 
models. Initially, for a few design iterations, a corrected physics-based low-fidelity model is employed, 
which is subsequently replaced by a response surface approximation model. The low-fidelity model is 
based on the same governing fluid flow equations as the high-fidelity one, but uses coarser mesh res-
olution and relaxed convergence criteria. The shape-preserving response prediction (SPRP) technique is 
utilized to predict the high-fidelity model response, here, the airfoil pressure distribution. In this pre-
diction process, SPRP employs the actual changes of the low-fidelity model response (or the surface 
approximation model) due to the design variable adjustments. The SPRP algorithm is embedded into the 
trust region framework to ensure good convergence properties of the optimization procedure. Our algo-
rithm is applied to constrained inverse airfoil design in inviscid transonic flow. A comparison with the 
basic version of the optimization algorithm, exploiting only a physics-based low-fidelity model, is car-
ried out. While the performance of both versions is similar with respect to their ability to match the 
target pressure distribution, the improved algorithm offers substantial design cost savings, from 25 to 
72 percent, depending on the test case.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Aerodynamic shape optimization (ASO) involves the design 
of aerodynamic components such as aircraft wings and turbine 
blades [6,24]. The state-of-the-art ASO design methods employ 
high-fidelity computational fluid dynamics (CFD) simulations as 
a part of efficient numerical optimization algorithms [2,10,27,28]. 
The accurate CFD simulations typically lead to more realistic and 
attainable designs. The downside is that the high-fidelity CFD 
analysis is computationally expensive and design optimization nor-
mally requires a large number of simulations, which leads to a 
time consuming design process. Furthermore, often a large num-
ber of design variables are required in order to define, in sufficient 
detail, the geometry of the component being studied, adding to 
the dimensionality of the design problem.

Airfoil design methods can be broadly categorized into direct 
and inverse methods [8]. The direct methods involve changing the 
geometric shape to maximize a given performance criterion sub-
ject to one or several constraints at a given operating condition. 
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The most common objective functions include lift maximization, 
drag minimization, and lift-to-drag ratio maximization. Often, only 
an initial shape is prescribed along with the desired constraint 
values, and nothing is assumed regarding the properties of the 
fluid flow. Some of the most successful direct ASO methods, for 
both incompressible and compressible flows, are gradient-based 
[11,13,24], and many also use continuous adjoint methods [15], or 
discrete adjoint methods [26]. More recently, the introduction of 
surrogate-based optimization (SBO) [10,27] methods to ASO have 
been successful in reducing the overall computational cost, as well 
as handling noisy objective functions. Examples of such work can 
be found in [2,3,5,22,28].

Inverse design methods, on the other hand, require the defi-
nition of specific flow characteristics a priori [8]. Typically, either 
a target pressure or a velocity distribution is specified, with the 
former being more popular. The aerodynamic shape is then mod-
ified or designed to achieve these characteristics. Inverse design 
is, usually, more computationally efficient than direct optimization, 
because the changes in the geometry can be related to the required 
change in performance, and, thus, requiring few flow solutions to 
obtain the final profile [21]. However, the task of creating pressure 
distributions that meet the required aerodynamic characteristics 
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is not trivial and the designer has to rely on experience (and/or 
available data), or employ special optimization methods [14,20]. 
Furthermore, inverse design methods only provide the shape that 
meets the specific characteristics, which may or may not be opti-
mal. Moreover, one cannot guarantee that an arbitrarily prescribed 
pressure distribution will yield a realistic airfoil profile [25].

A computationally efficient design optimization methodology 
for inverse design of transonic airfoils was recently introduced 
in [23]. The approach replaces the direct optimization of an ac-
curate, but computationally expensive, high-fidelity airfoil model 
by an iterative re-optimization of a surrogate model, which is 
constructed during each design iteration using a physics-based 
low-fidelity model and the shape-preserving response prediction 
(SPRP) technique [16]. The low-fidelity model is based on the same 
governing fluid flow equations as the high-fidelity one, but uses 
coarser discretization and relaxed convergence criteria. The SPRP 
is utilized to predict the high-fidelity model response (in this case, 
the airfoil pressure distribution) using the low-fidelity model re-
sponse changes described by properly defined set of characteristic 
points.

In this work, we substantially enhance the optimization meth-
odology introduced in [23]. More specifically, the low-fidelity CFD 
model is replaced—after a few design iterations—by its (local) re-
sponse surface approximation. This allows us to reduce the overall 
design cost and obtain faster convergence when compared to the 
original version of the algorithm. Our approach is demonstrated 
using several transonic airfoil design cases.

2. Problem formulation

Airfoil shape optimization can be formulated as a constrained 
nonlinear minimization problem, i.e., for a given set of operating 
conditions, solve

min
x

f (x)

s.t. g j(x) ≤ 0, j = 1, . . . , M

hk(x) = 0, k = 1, . . . , N

l ≤ x ≤ u (1)

where f (x) is the objective function, x is the design variable vec-
tor, g j(x) are the inequality constraints, M is the number of the 
inequality constraints, hk(x) are the equality constraints, N is the 
number of the equality constraints, and l and u are the design 
variables lower and upper bounds, respectively.

In inverse design, the role of the designer is to specify a partic-
ular flow feature, which typically is a target pressure distribution, 
Cp.t , on the surface of the airfoil. The task is then to find the airfoil 
shape that can give the target pressure distribution at the desired 
flow condition. This can be done by minimizing the difference be-
tween the pressure distribution of the airfoil C p and the target 
distribution C p.t .

The objective function can be formulated as the difference be-
tween the airfoil pressure distribution and the target pressure dis-
tribution, or f (x) = 1/2 

∫ [C p(x) − Cp.t]2 ds. A minimum thickness 
is normally specified so that the optimizer does not reduce the 
airfoil to a thin plate. The thickness constraint can be written as 
g(x) = Amin − A(x) ≤ 0, where A(x) is the cross-sectional area of 
the airfoil and Amin is the minimum cross-sectional area.

In this paper, we use the NACA airfoil shapes to illustrate the 
use of the proposed methodology. In particular, we use the NACA 
four-digit airfoil parameterization method, where the airfoil shape 
is defined by three parameters m (the maximum ordinate of the 
mean camberline as a fraction of chord), p (the chordwise position 
of the maximum ordinate) and t/c (the thickness-to-chord ratio). 
The airfoils are denoted by NACA mpxx, where xx represents the 
value of t/c. The shapes are constructed using two polynomials, 

Fig. 1. Shown are three different NACA four-digit airfoil sections; NACA 0012 (m = 0, 
p = 0, t/c = 0.12) solid line (—), NACA 2412 (m = 0.02, p = 0.4, t/c = 0.12) dashed 
line (--), NACA 4608 (m = 0.04, p = 0.6, t/c = 0.08) dash–dot line (-·-).

one for the thickness distribution and the other for the mean cam-
ber line. The full details of the NACA four-digit parameterization 
method are given in Abbott and von Doenhoff [1]. Three example 
NACA four-digit airfoils are shown in Fig. 1.

3. CFD modeling

A single CFD simulation is, in general, composed of four steps; 
the geometry generation (described here in Section 2), meshing of 
the solution domain, numerical solution of the governing fluid flow 
equations, and post-processing of the flow results, which involves, 
in the case of numerical optimization, calculating the objectives 
and constraints. In this section we present the high- and low-
fidelity CFD models.

3.1. High-fidelity CFD model

The flow is assumed to be steady, inviscid, and adiabatic with 
no body forces. The Euler equations are taken to be the governing 
fluid flow equations (see e.g., Tannehill et al. [29]). The computa-
tional meshes used in this study are all of structured curvilinear 
body-fitted C-topology. The solution domain boundaries are placed 
at 24 chord lengths in front of the airfoil, 50 chord lengths be-
hind it, and 25 chord lengths above and below it. The meshes are 
generated with the computer code ICEM CFD [12]. A fine mesh 
was developed with a total of 320 points in the vertical direction, 
180 points on the airfoil surface and 160 points in the wake be-
hind the airfoil, with a total of 106 thousand cells. An example 
computational mesh is shown in Fig. 2.

The numerical fluid flow simulations are performed using the 
computer code FLUENT [9]. Asymptotic convergence to a steady 
state solution is obtained for each case. The iterative convergence 
of each solution is examined by monitoring the overall residual, 
which is the sum (over all the cells in the computational domain) 
of the L2 norm of all the governing equations solved in each cell. 
In addition to this, the lift and drag forces (defined in Section 3.3) 
are monitored for convergence. The solver convergence criteria is 
to reduce the maximum residual by six orders of magnitude, or a 
maximum number of iterations of 1000, whichever comes first.

3.2. Low-fidelity CFD model

In order for SBO to have an impact on the overall efficiency 
of the design process, the simulation time of the surrogate model 
needs to be substantially lower than that of the high-fidelity 
model. Here, we construct the low-fidelity CFD model by using the 
high-fidelity CFD model (as described in Section 3.1), but with a 
coarser computational mesh and relaxed convergence criteria.

We performed a parametric study on a computational mesh of 
a typical airfoil section by reducing the number of mesh points and 
reducing the number of required solver iterations. The NACA 2412 
was selected for this study. The free-stream Mach number is taken 
to be M∞ = 0.75 and the angle of attack is set to α = 1 deg. A fine 
mesh was developed for this case with a total of 320 points in the 
vertical direction, 180 points on the airfoil surface and 160 points 
in the wake behind the airfoil, with a total of 106 thousand cells.
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