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In this paper a successful topology optimization of a centrifugally loaded aero-engine part is presented. 
For the topology optimization, which is a nonlinear problem due to several contact regions, a self-
developed topology optimization algorithm in combination with a commercial FE-solver is used. The 
goal of the optimization was the reduction of stresses in the structure.
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1. Introduction

Since many years the topology optimization is a well-estab-
lished and widely used tool in structural mechanics. However in 
most cases only linear problems are investigated although there 
are some approaches for nonlinear topology optimization algo-
rithms like the equivalent static loads method [7] for sensitivity-
based algorithms or algorithms basing on optimality criteria like 
ESO-methods (Evolutionary Structural Optimization, for details see 
[12]) or hybrid cellular automata methods [8]. Here, we will 
present a very simple and easy to implement topology optimiza-
tion algorithm, which reached very good results in some linear and 
nonlinear test-problems.

In the second part of this paper the introduced algorithm is 
used for the topology optimization of an aero-engine part, which 
is loaded by very high centrifugal loads. The topology optimiza-
tion of such body-force problems is a difficult task and can cause 
failure of conventional sensitivity-based topology optimization al-
gorithms [2].

Because the Finite Element Method (FEM) is the standard ap-
proach to solve boundary value problems of arbitrary structures 
for many decades, all further explanations and comments have to 
be considered against this background.
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2. New topology optimization algorithm

The presented topology optimization algorithm is an optimality 
criteria-based method. The fundamental idea behind these meth-
ods is the so-called fully-stressed design. This means that a design 
is considered as optimal, if all regions of the structure or all in-
finitely small volume elements of a continuum resp. are subjected 
to the same maximum allowable stress state.

In order to reach such a fully-stressed design, different ap-
proaches are possible. The algorithm used here, iteratively in-
creases the stiffness of finite elements with high stresses and de-
creases the stiffness of low-stressed elements. For the introduction 
of design variables in the optimization process the SIMP-approach 
(Solid Isotropic Material with Penalization, see also [1]) is used. 
In this approach the stiffness tensor E of a finite element is com-
puted as the product of the “normal” stiffness tensor E0 of the 
element, which depends on geometrical and material properties of 
the element, and a dimensionless so-called density factor ρ:

E = ρ p E0. (1)

The density factor ρ may vary between 0 and 1 where ρ > 0
should be always true to avoid numerical problems. The exponent 
p ≥ 1 is called penalty exponent. It is introduced to force the op-
timization algorithm to come up with a clear 0–1 distribution of 
material. If we assume for example, that an element has a density 
factor of ρ = 0.5 and p equals 2, then the volume of the element 
is computed as V = 0.5 · V 0 (with the geometrical element vol-
ume V 0) but the stiffness follows as E = 0.52 E0 = 0.25E0. This 
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Fig. 1. Change of density distribution during the optimization process (at the example of a volume constraint of 30%) [6].

means that the element causes high costs with respect to the vol-
ume but offers a low stiffness compared to these costs. Now the 
optimization algorithm must decide if the element is important for 
the structure and increase the stiffness or decrease the stiffness if 
the element is not important. Both would improve the cost–benefit 
ratio. The advantage of penalty exponents greater than 1 is that the 
result becomes more discrete and contains fewer elements with 
“intermediate densities”, which makes an interpretation of the re-
sult much easier. The disadvantage is that optimization problems, 
which are actually convex, lose their convexity [11,10]. After all, 
the task for the optimization algorithm is to determine an optimal 
density factor for every finite element. At the end of the optimiza-
tion, the optimized density distribution shows, which regions of 
the meshed design space are important for the structure and their 
desired properties (high density factor and therefore high stiffness) 
and which regions are not important due to their low density and 
therefore low stiffness.

The algorithm presented here is able to solve topology opti-
mization problems of the form

min
ρ

f T u s.t. K (ρ)u = f ,
ρT v

Vds
= volfrac, 0 < ρi ≤ 1, (2)

where f is the global load vector, u is the global displacement 
vector, K is the global stiffness matrix (which depends on the vec-
tor of the element densities ρ = (ρ1, ρ2, ..., ρn)T ), v is the vector 
of the geometrical element volumes, Vds is the sum of all ge-
ometrical element volumes V i in the design space, volfrac is a 
volume constraint, which defines the ratio of the desired final vol-
ume of the design space to the total (geometrical) design space 
volume Vds and n is the number of finite elements in the de-
sign space. This means the algorithm is able to solve a so-called 

minimum compliance problem (maximization of global stiffness 
under volume constraint). The optimal density distribution is de-
termined by using a “container” system, which is also explained in 
Fig. 1. Every container represents one of the eleven density values 
0.0001, 0.2, . . . , 0.9 or 1.0. All elements are iteratively assigned to 
one of the eleven containers and get the density value correspond-
ing to the respective container. (The penalty exponent p equals 
always 1 in this algorithm.) For the classification of the elements 
to the containers, the von Mises stress of the elements is evalu-
ated (if there are several integration points in one element, the 
average value is computed) in the examples, presented in this pa-
per. In general not only the von Mises equivalent stress has to be 
used but all equivalent stress formulations, that are proportional 
to the strain energy density, are usable [1,9]. After each iteration, 
the density distribution is determined again. Elements with a high 
von Mises stress are classified to a container with a high density 
value and elements with a low von Mises stress level are classified 
to a container with a low density. With an increasing number of 
iterations, the number of elements with densities between 0 and 1 
(e.g. 0.5 or 0.6) is reduced and the design is driven to a clear 0–1 
or white–black distribution respectively. This simplifies the inter-
pretation of the result at the end of the optimization. Finally, there 
are only a few elements with intermediate densities left to fulfill 
the volume constraint of the optimization task.

In the first iteration i = 1, the 0.1 · n · volfrac elements with 
the highest von Mises stress are assigned to the container with 
the density 1.0. Consecutively the containers with the densities 
0.1, ..., 0.9 are each filled with 0.1 · n elements. If two elements 
have exactly the same von Mises stress value, they are assigned 
to the same container even if the maximum number of elements 
for the container is already reached. This procedure ensures the 
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