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Active vibration control of a flexible beam with piezoelectric pieces on the surface is investigated
experimentally using the independent modal space control method, which is able to control the first
three modes of the beam independently. A comparison between the responses of the beam before and
after control indicates that the modal damping of the flexible beam is greatly improved and the effects of
vibration suppression are very remarkable. The dynamic equation of the beam is deduced by Hamilton’s
principles, and numerical simulation of the active vibration control of the first three modes of the beam
is also conducted in this paper. The simulation results match the experimental results very well. Both the
experimental and numerical results indicate that by using piezo-patches as actuators the independent
mode control method is a very effective approach to realize vibration suppression, and has promising
applications in the aerospace field.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Many aircraft structures, such as the cabin of a space station,
solar panels, large space-deployable reflectors, and precise anten-
nae, are characteristically of large size, high flexibility, and low
natural frequency. Spacecraft particularly tend to be impacted and
disturbed by particulate flows, astro-winds, and other forces while
traveling in space so that vibration is produced. As there is almost
no damping in space, the vibration will continue for a long time.
The strong vibration will affect the operating accuracy and stabil-
ity of the structures, and long-term vibration may cause fatigue
damage to the structures and reduce their service life; such vibra-
tion and its accompanying noise are very harmful to the health of
people in space and worsen their living environment.

The active vibration control technique has become a research
hotspot, due to its advantages of high adaptability and sound con-
trol effect. Using piezoelectric ceramics as intelligent materials to
suppress the vibration of a flexible structure is an effective ap-
proach. Bailey and Hubbard [1] first performed a test of the active
vibration control on a cantilever beam by pasting a whole piece
of piezoelectric film on the beam. Their research started a new
research field of active vibration control using piezo-patches as
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actuators. Crawley and Luis studied the interaction between the
piezo-patches and the substructure and conducted an experiment
of the active vibration control on the first mode of a cantilever
beam with distributed piezoelectric actuators [4]. Then, various re-
search results have been reported recently [2,3,5–10,12–15]. Baz
and Poh adopted the mode control methods to control several vi-
bration modes of a cantilever beam by using one piezoelectric ac-
tuator and obtained some control effect, but they didn’t realize the
simultaneously independent control of each vibration mode [2].
Song, Schmidt and Agrawal adopted Positive Position Feedback
(PPF) and Strain Rate Feedback (SRF) to perform a test of the active
vibration control of the first two modes of a cantilever beam with
piezoelectric actuators and compared the effect of the two control
algorithms [14]. Gaudenzi, Carbonaro and Benzi established a finite
element model of a cantilever beam with piezoelectric sensors and
actuators symmetrically bonded on the upper side and lower side,
and conducted an experiment and simulation of active vibration
control of the first two modes of the structure by the independent
modal space control method [6]. However, most of the existing re-
searches in the field of active vibration control focus on theoretical
deduction and numerical simulation [3,5,7–10,12,13,15].

The structures of spacecraft cost extremely high which features
light mass and high flexibility. When these structures are affected
by external forces and disturbances, the effect of the high-order
modal vibration components on the large flexible structures cannot

http://dx.doi.org/10.1016/j.ast.2014.04.008
1270-9638/© 2014 Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.ast.2014.04.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
mailto:wudafang@buaa.edu.cn
http://dx.doi.org/10.1016/j.ast.2014.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2014.04.008&domain=pdf


D. Wu et al. / Aerospace Science and Technology 37 (2014) 10–19 11

be ignored. It requires a series of data processing procedures to
realize dynamic control experimentally. These processes include
data input, modal smoothing, controlled quantity calculation, data
output and so on, which can lead to the non-correspondence of
the point-in-time between the inputs and outputs. More modes
needed to be simultaneously controlled means that the more con-
trol channels are required, which leads to increased computation
complexity of the control algorithm and obvious phase shift be-
tween the input and output. In the experiments, when the cal-
culated theoretical control amount is used as an input to control
the vibration of the beam, the vibration status of the beam has
changed and was different from the status when the theoretical
data was input. Sometimes, using the theoretical control amount
may cause excitation or other vibration modes. Thus, compared
with the pure theoretical calculation, the effective active vibration
controls on the relatively complex, highly flexible structures with
high order vibration modes are difficult to be realized.

Currently, only the control of lower-order modes (i.e., the first
and second-order modes) of the beam structure’s has been re-
ported in published literatures, in which the active control is ex-
perimentally realizable [1,2,4,6,14]. According to the retrieved re-
sults from the existing literatures, the realization of active vibra-
tion control of the third order modes of large flexible structures
was seldom reported so far.

The independent modal method controls the maximum de-
formed positions of each order of mode of the large flexible struc-
ture at the same time. It will take a short time to suppress the
vibration and get a good control effect, but too many channels
need to be simultaneously controlled, which can cause large calcu-
lation amount and phase shift between the input and output. For
this reason, practical implementation of this method is quite cum-
bersome. This research realizes the independent control of the first
three modes of the large flexible cantilever beam by independent
modal method. Meanwhile, Hamilton’s principles are used to de-
duce the dynamic equation of a flexible beam with piezo-patches,
and then the numerical simulation of active vibration control of
the first three modes of the beam is performed. It shows the re-
sults of numerical simulation are coincident with the results of
experiments. This research lays a foundation for the realization of
the complex multi-channel active control of the higher-order large
flexible beam structures or shell structures in the future.

2. Dynamic equation and independent mode control method

2.1. Dynamic equation

According to vibration theories, when a beam is subjected to
the transversely dynamic loads, the bending vibration differential
equation of it expressed with the displacement can be described
in [16] as

Eb Ib
∂4 w

∂x4
+ c

∂ w

∂t
+ ρb Ab

∂2 w

∂t2
= f (1)

where Eb and Ib are, respectively, the modulus of the elasticity and
the area moment of inertia of the cross-section; c is the damping
coefficient of the structure; ρb and Ab are the density and the
cross-sectional area of the beam; f is the transversely dynamic
forces; w is the transverse displacement of the structure.

When the transverse vibration of the beam is controlled
through the piezo-actuators, the transversely dynamic forces f on
the right side of Eq. (1) are composed of two components, the
transverse initial exciting forces and the control forces caused by
the actuators, which can be expressed as

f = fe + fv (2)

where fe is the transverse initial exciting forces acting on the
beam; fv is the transverse control forces applied on the beam.

It is known according to the research results presented by
Crawley and Luis in [4] that the force caused by the piezo-actuator
bonded on the beam surface under the voltage can be equivalent
to a bending moment upon the beam. Therefore, when there are
many piezo-actuators dispersedly arranged on the beam, and the
vibration of the beam is controlled through these actuators, the
control forces caused by these piezo-actuators can be written as

fv = ∂2

∂x2

n∑
i=1

kϕi Li(x) (3)

In Eq. (3), k is a constant which relies on the Young’s modulus and
the size of the beam and the piezo-patches; ϕi is the voltage ap-
plied on the ith piece of piezo-patch; Li(x) is the local function of
the piezo-patches, which can be expressed with Heaviside function
H(x) as

Li(x) = H(x − xi1) − H(x − xi2) (4)

where xi1 and xi2 are the coordinates at the left and the right end
of the ith piece of piezo-patch.

Let’s express the transverse displacement of the beam w by the
first m-order modes, by substituting Eq. (3) into Eq. (2), then sub-
stituting the result into Eq. (1), in terms of the orthogonality of the
normalized mode shape, after some simplifications, the dynamic
equation of the system, when the flexible beam is only subjected
to the control voltage ϕ , can be expressed with the modal coordi-
nate η as

η̈ + C η̇ + Kη = K ψϕ (5)

where η = {η1, η2 . . . ηm}T, is the modal coordinate; C is the damp-
ing matrix; K is the modal stiffness matrix; K ψ is the electrome-
chanical coupling matrix, which relies on the material, the size, the
mode shape of structure, and the location of the piezo-patches. Let

K ψϕ = F c = {Fc1, Fc2, · · · , Fcm} (6)

In Eq. (6), F c is the modal control force vector. Then Eq. (5) can be
written as

η̈i + 2ωiξ
∗
i η̇i + ω2

i ηi = Fci (i = 1,2, · · · ,m) (7)

where ηi is the ith modal coordinate, ωi is the ith natural fre-
quency, ξ∗

i is the ith damping ratio, and Fci is the ith modal
control force.

2.2. Independent mode control method

It is known from Eq. (7) that all modes of the open-loop sys-
tem are independent. Therefore, the vibration control of the whole
structure can be converted into the control of each mode. Eq. (7) is
the foundation of the independent mode control method. If speed
negative feedback is adopted to control every mode, let the modal
control force be

Fci = −gi η̇i (8)

where gi is the ith-order modal velocity gain, then the equation of
the closed-loop system after control is given as

η̈i + (
2ωiξ

∗
i + gi

)
η̇i + ω2

i ηi = 0 (9)

As known from Eqs. (7) and (9), all modes of the structure are
decoupled from each other before and after control. This is also
called the independent modal space control method. Letting the
damping ratio of the ith mode after control be ξi , then the follow-
ing equation can be obtained from Eq. (9).

gi = 2
(
ξi − ξ∗

i

)
ωi (10)
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