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The use of correction factors to improve the accuracy of the aerodynamic influence coefficient (AIC) 
matrices produced by the vortex-lattice and the doublet-lattice methods has been an engineering practice 
in the field of aeroelasticity. In order to account for either viscous or transonic flow effects not considered 
in the linearized formulation of such methods, the most frequent correction techniques have been to pre-
multiply or to post-multiply the AIC matrices by diagonal matrices comprising semi-empirical weighting 
factors. This paper proposes a different correction approach: the control-point-placement method (CPPM), 
based on the idea of displacing the control point of each panel – the point where the boundary condition 
of flow tangency must be satisfied. Both the vortex- and the doublet-lattice methods have been developed 
with the singularities placed at the quarter-chord line of the panels and the control points at three 
quarters of their mean chords. With the calculation of modified control point positions, the CPPM 
intrinsically changes the mutual aerodynamic influence between the panels and allows the lifting surface 
methods to predict steady-state pressure distributions that match or approximate with minimum error 
those derived from wind tunnel measurements or higher-fidelity CFD solutions. Different approaches to 
extend the aerodynamic correction for application at non-zero reduced frequencies in the doublet-lattice 
method are then studied. Results are presented that are in acceptable agreement with benchmark wind 
tunnel data and comparisons are made between the proposed methodology and the traditional diagonal 
matrix corrections.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Since it was published in 1969 [1], the doublet-lattice method 
(DLM) has played a significant role in the aeronautical industry 
world-wide, allowing the prediction of both the subsonic aeroelas-
tic stability and the aeroelastic response of general configurations. 
The DLM has proved to be versatile, since it can be applied to 
problems with multiple nonplanar surfaces and control surfaces 
without difficulties [5], with the advantages of a very reasonable 
cost and of its availability in widespread programs, like MSC/NAS-
TRAN [33].

Based on the linearized potential flow equation, with the as-
sumption of small disturbances in both the velocity potential and 
the displacements, the DLM allows the aerodynamics in the sub-
sonic regime to be modeled in terms of matrices of aerodynamic 
influence coefficients (AIC), which relate the displacements of the 
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lifting surfaces to the resulting loads on them. The capability to 
address the aerodynamics of the lifting surfaces by means of AIC 
matrices greatly simplifies the mathematical formulation, allowing 
the typical aeroelastic system stability analysis to be expressed in 
the form of an eigenvalue problem.

The integral equation upon which the DLM is based relates the 
pressure and the normalwash distribution in unsteady subsonic 
three-dimensional potential flows, and was first derived by Küss-
ner back in 1940 [[22], apud [5]]. The referred equation reads [5,
15]:

w(x, y, z)

U∞

= 1

8π

�
L·S·

�C p(ξ,η, ζ )K (x − ξ, y − η, z − ζ,ω, M∞)dξdη, (1)

where w(x, y, z) is the normalwash velocity at point (x, y, z); U∞
is the free stream velocity; and �C p(ξ, η, ζ ) is the unsteady pres-
sure coefficient difference at the point (ξ, η, ζ ). K is the kernel 
function of the integral relation. It depends on the relative posi-
tion (x − ξ, y − η, z − ζ ), an assumed harmonic circular frequency, 
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ω, and the free stream Mach number, M∞ . The integration is over 
all the lifting surfaces.

The origins of the DLM have intrinsic relations with the vortex-
lattice method (VLM). Actually, the VLM, as developed in its mod-
ern form by Hedman [19,20], provided the basis for the DLM [32], 
and the DLM may be seen as an extension of the VLM [42]. Ad-
ditionally, since the kernel in Eq. (1) cannot be integrated ana-
lytically, it was assumed in the development of the DLM that the 
numerator of the quotient which defines the kernel varied quadrat-
ically – recent studies suggested a quartic interpolation to be a 
better option [34,35]. To eliminate the approximation error at zero 
frequency, Hedman’s downwash factor is added to the kernel equa-
tion, and the one calculated by the interpolation is subtracted [32]. 
Therefore, the DLM, in the steady regime, is rigorously Hedman’s 
VLM.

In both the vortex- and the doublet-lattice methods, the lift-
ing surfaces are ideally discretized into trapezoidal planar pan-
els, alternatively called boxes, with two side edges parallel to the 
undisturbed flow, assumed by convention to be aligned with the x
direction of the system of coordinates. The bound leg of the horse-
shoe vortex and the doublet line both stand along the quarter-
chord (1/4 c) line of the panel. Both methods need a control point 
position to be specified for each panel. This control point is some-
times named collocation or downwash point and it is where the 
linearized boundary condition of tangential flow is satisfied.

The control points have been fixed by experience to the three-
quarters of the panel mean chord (3/4 c). It was in 1937, in a 
paper by Pistolesi [[29], apud [11]], that the 1/4−3/4 rule first 
appeared [11]. Pistolesi proved this approximation to yield, for a 
two-dimensional wing section, exactly the same sectional lift and 
moment, at constant angle of attack, as the ones predicted by thin 
airfoil theory in incompressible flow [11]. Later, the rule was suc-
cessfully applied to sections with multiple chordwise panels. Both 
Hedman [19] and Albano and Rodden [1] assume the 1/4−3/4
rule in their developments.

The previous arguments seem sufficient to justify no change in 
the 1/4−3/4 rule in the VLM and the DLM, since it yields consis-
tent results for some specific cases where the hypotheses of the 
methods are clearly not violated. However, it cannot be forgotten 
that Pistolesi’s findings assumed incompressible two-dimensional 
flow. Moreover, derivations of more precise vortex and control 
point locations have already been made in lifting surface meth-
ods, e.g. Lan’s quasi-vortex-lattice method that enables the correct 
determination of the leading edge suction force and that is more 
accurate when flap deflections are present [23]. Therefore, in the 
case of more complex flow regimes, it can be investigated whether 
or not keeping the 1/4−3/4 rule is still the most interesting ap-
proach.

In the flow regimes characterized by nonlinear effects due to 
compressibility and viscosity, it is clearly expected that the ap-
plication of the DLM will not produce accurate results. One typ-
ical problem is when it is needed to accurately determine hinge 
moments on control surfaces, which are most typically near the 
trailing edge of the main surfaces, where the viscous effects are 
stronger due to the boundary layer thickening, and the linear 
methods may be inaccurate even in the subsonic regime [28].

Another problem is the transonic regime, where it is known 
that the aeroelastic behavior of an aircraft is critical, due to com-
plex nonlinear phenomena related to viscosity and to (moving) 
shock waves [38]. The linear theory is markedly non-conservative 
under these flow conditions, where such nonlinear phenomena 
lead to a drop in the flutter boundary known as the transonic flut-
ter dip. The capability to predict the bottom of the dip is then 
crucial to the design of any flight vehicle that operates in the 
transonic regime, including modern airliners and military transport 
aircraft [3,36]. Schuster et al. [36] provide a summary on the main 

aspects regarding the transonic dip, and Bendiksen [3] presents a 
broader physical understanding of the phenomenon enlightened by 
the mathematical theory of unsteady transonic flow.

In what refers to aeroelasticity in the context of the aeronau-
tical industry, it is known that possibly thousands of flutter runs 
are needed in the certification process of modern aircraft, a num-
ber that is a function of the amount of different configurations the 
aircraft can assume – concerning variables such as Mach number, 
mass distribution, deployment of control surfaces, landing gears, 
installation of external stores, etc.

Even considering the extraordinary developments in computa-
tional algorithms and computer hardware, fluid–structure inter-
action (FSI) simulations based on the full Navier–Stokes equa-
tions coupled with structural-dynamic finite-element methods, 
that would produce the most reliable theoretical results for the 
problem, are not yet practical for production flutter analysis [3]. 
Furthermore, transonic wind tunnel testing of aeroelastic mod-
els involves expensive models and high operational costs [38,46]. 
Flight flutter testing is a hazardous and also expensive option in 
terms of operational costs [38].

Other computational methods of intermediate fidelity between 
the linear methods and the full-Navier–Stokes-based CFD codes, 
such as the ones based on the Euler, the full-potential or the 
transonic-small-disturbance (TSD) equations, can produce results 
that are more reliable than those of linear methods. Neverthe-
less, although some of these higher-fidelity methods also allow 
the convenience of operating with AIC matrices [2], e.g., the tran-
sonic doublet-lattice method (TDLM) by Lu and Voss [26,43] and 
the overset-field panel method by Chen et al. [7] implemented in 
the ZTRAN module of the ZAERO software [47], they are character-
ized by greater turnaround times than that of the DLM [37], with 
more complex model preparation.

Therefore, thinking of production flutter analysis, it is still very 
reasonable to deal with aerodynamic corrections to the DLM in the 
transonic regime [46]. The correction procedures produce modified 
AIC matrices to be used in the flutter analysis of cases spanning 
the whole flutter-clearance envelope of the aircraft. The flutter data 
then generated guide the aeroelastician to the most critical config-
urations for that aircraft, and these are the ones that should be 
preferably analyzed in higher-fidelity, more complex tools, as de-
scribed by SenGupta [37].

Efforts to increase the range of applicability of the DLM have 
been made since the 1970’s [16,28]. The general approach is to 
somehow introduce into the method higher-fidelity data obtained 
from wind tunnel tests or from nonlinear Navier–Stokes CFD sim-
ulations. The aerodynamic corrections of the AIC matrices are 
then performed at prescribed values of Mach number and re-
duced frequency. Hence, these empirical methodologies preserve 
the computational advantages of the DLM, being adequate tools for 
engineering-level applications, mainly in the preliminary design of 
an aircraft [38].

Palacios et al. [28] present a brief literature survey of correc-
tion methods. Silva [38] presents a more comprehensive review of 
the various methodologies that have been applied over the years. 
Amaral [2] revisited the subject by comparing different correction 
methods available in the literature. Therefore, for a deeper and 
broader perspective on the different correction methodologies, it 
is suggested that the reader consult Refs. [28,38] and [2].

A close review of the correction methods published thus far 
shows that no other author has yet considered dealing with the 
control point locations to determine corrected AIC matrices. In the 
control-point-placement method (CPPM) proposed in the present 
paper, the control point locations are interpreted as parameters 
of the lifting surface methods. The main idea is that, by correctly 
changing these parameters, taking as reference nonlinear pressure 
distributions, the complete AIC matrix can be modified. Conse-
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