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For computation of rarefied flows in continuum-transition regime with Knudsen number Kn of O(1), 
Burnett equations have been proposed about a century ago as a set of extended hydrodynamics equations 
(EHE) that represent the second-order departure from thermodynamic equilibrium in the Chapman–
Enskog expansion of Boltzmann equation; the first order terms in the expansion result in the Navier–
Stokes equations. Over the years, a number of variations of original Burnett equations have been proposed 
in the literature known as the Conventional Burnett equations, the Augmented Burnett equations and the 
BGK–Burnett equations. In this paper, another simpler set of Burnett equations is proposed by order of 
magnitude analysis in the limit of high Mach numbers for hypersonic flow applications. These equations, 
designated as ‘Simplified Conventional Burnett (SCB)’ equations are stable under small perturbations and 
do not violate the second law of thermodynamics. An implicit numerical solver is developed for the 
solution of SCB equations. The SCB equations are applied to compute the hypersonic flow past 2D and 
3D blunt bodies for Kn in continuum and continuum-transition regime. The SCB solutions are compared 
with the Navier–Stokes and DSMC solutions. It is shown that the SCB equations can be employed to 
compute the hypersonic flow past bodies in continuum-transition regime with much less computational 
effort because of their simplicity compared to Conventional and Augmented Burnett equations.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

In high altitude hypersonic flows past space vehicles, especially 
in low earth orbit, part of the flow field is in continuum regime 
and part of it is in rarefied continuum-transition regime where 
Knudsen number Kn ∼ O(1). This is also the case for gaseous flow 
in many micro-electro-mechanical (MEM) devices where the low 
density and small length scale result in Kn ∼ O(1). In continuum-
transition regime, Navier–Stokes (NS) equations are not accurate 
because of continuum breakdown due to rarefaction in flow re-
gions near the bow shock, in Knudsen layer and in the wake of the 
vehicle [8]. Direct Simulation Monte Carlo (DSMC) [5,6] has been 
widely used for calculation of rarefied flows; however it requires 
a large number of particles which make the simulations com-
putationally very costly. As an alternative, higher-order extended 
hydrodynamics equations (EHE) beyond Navier–Stokes have been 
proposed for computation of flows in continuum-transition regime. 
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These equations are derived from the classical Boltzmann equation 
by applying the Chapman–Enskog expansion; they were first de-
rived by Burnett and therefore known as the Burnett equations [9]. 
They represent the second-order departure from thermodynamic 
equilibrium; the first-order departure leads to the Navier–Stokes 
equations. These equations include higher-order stress tensor and 
heat flux terms in the constitutive relations. It is instructive to re-
call that the constitutive relations for Navier–Stokes equations are 
linear Stokes law for the stress tensor and Fourier’s law for the 
heat flux. Over the years, a number of variants to the original Bur-
nett equations [9] have been proposed; these are summarized in 
Refs. [1,13] and are known as the ‘Conventional Burnett equations 
(CBE)’, ‘Augmented Burnett (AB) equations’ and the ‘BGK–Burnett 
equations’.

One of the difficulties in using Burnett equations has been 
that they have been found to be unstable under small wave-
length perturbations; this was concluded by Bobylev [7] by con-
ducting the linearized stability analysis of 1D Burnett equations. 
This problem of stability was also noted by Fiscko and Chapman 
[12] and Fiscko [11] who found that the Burnett equations became 
unstable when the mesh was refined. For a long time, the lin-
earized instability problem impeded the use of Burnett equations 
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Nomenclature

a sound velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
r nose radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
k non-dimensional circular frequency
Ki coefficients of stress terms in Burnett equations
Kn Knudsen number
L characteristic length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Lref reference length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Ma Mach number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m2

p∞ free stream pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m2

Pr Prandtl number
qi heat flux terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/(m2 s)
R gas constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J/(kg K)
Re Reynolds number
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T∞ free stream temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Tref reference temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

T w wall temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
Ts jump-temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
U free stream velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
ui velocity tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
us slip-velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ρ∞ free stream density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ρref reference density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

τi j stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N/m2

μ viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (N·s)/m2

μref reference viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . (N s)/m2

κ thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . J/(m s K)
θi coefficients of heat flux terms in Burnett equations
λ mean free path of gas molecules . . . . . . . . . . . . . . . . . . . . m
σu accommodation coefficient of momentum
σT accommodation coefficient of temperature

for computation of rarefied flows. In 1993, Zhong et al. [25] de-
rived the third-order super Burnett equations and then introduced 
part of third-order terms into the conventional Burnett equations 
to stabilize them using the Bobylev’s method; they called this new 
set of equations the Augmented Burnett (AB) equations. However, 
the addition of third-order terms added to the complexity and in 
some cases it has been difficult to obtain convergent stable solu-
tions [1]. Comeaux et al. [10] and Jin and Slemrod [14] studied 
the compatibility of the conventional Burnett equations with the 
second law of thermodynamics and concluded that the addition 
of some third-order terms can result in violation of this law. Bal-
akrishnan et al. [3] and Balakrishnan and Agarwal [2] derived a 
new set of Burnett equations by using the Bhatnagar–Gross–Krook 
(BGK) model for the collision integral in the classical Boltzmann 
equation; they called this new set as the BGK–Burnett equations. 
Balakrishnan and Agarwal [2] showed that the BGK–Burnett equa-
tions are stable under small wave length disturbances and satisfy 
the Boltzmann H-theorem (they do not violate the second law of 
thermodynamics). It is also important to note the observation of 
Welder et al. [18] that it is not sufficient to carry out the linearized 
stability analysis by ignoring the high-order non-linear terms in 
Burnett equations to ensure stable solutions especially at larger 
Knudsen numbers; it does not guarantee the stability of non-linear 
equations on fine computational grids.

Because of their complexity, there has been limited develop-
ment of 3D computational codes in generalized coordinate system 
for the solution of Burnett equations for rarefied flows past com-
plex geometries. Majority of the papers consider computation of 
one-dimensional shock structure using Burnett equations. Among 
2D and 3D applications, Zhong et al. [22,24] studied the hyper-
sonic flow past a 2D cylindrical leading edge and axisymmetric 
flow past blunt bodies using the AB equations while Yun [20] in-
vestigated more complex 3D cases in his Ph.D. dissertation using 
the AB equations. Yun and Agarwal [21] also compared the rar-
efied hypersonic flow simulations using the BGK Burnett equations 
and the Augmented Burnett equations. Recently, Bao et al. [4] have 
performed the 2D linearized stability analysis of different variants 
of Burnett equations using the Bobylev’s method and have shed 
additional light on the stability issue in higher dimensions.

In this paper we derive a new set of Burnett equations which 
are simpler than the conventional Burnett equations by performing 
an order of magnitude analysis of higher-order stress and heat-flux 
terms and neglecting the terms which become negligibly small 
in the limit of large Mach number. We call this new set as the 

Simplified Conventional Burnett (SCB) equations, which is uncon-
ditionally stable according to one-dimensional linearized stability 
analysis. These equations are then solved by an implicit LU sym-
metric Gauss–Seidel scheme. The Developed SCB code is applied 
to calculate 2D and 3D blunt body flows and the results are com-
pared with NS solutions and Augmented Burnett solutions as well 
the DSMC solutions. For hypersonic flow past a 2D cylinder, it is 
shown that the SCB equations are computationally 33% more ef-
ficient than the AB equations and 25% less efficient than the NS 
equations.

2. Derivation of a new set of Simplified Conventional Burnett 
(SCB) equations

The original Burnett equations were derived from the clas-
sical Boltzmann equation for monoatomic gases employing the 
Chapman–Enskog expansion to the velocity distribution function 
to second order in Knudsen number, that is to O(Kn2) [9]. The 
conventional Burnett equations [1] were derived by replacing all 
the material derivatives in the original Burnett equations by the 
expressions for the material derivatives in the Euler equations. In 
the conventional Burnett equations, the second-order terms for the 
stress tensor and heat flux can be written as:
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where a bar over the derivative in Eqs. (1) and (2) represents a 
non-divergent symmetrical tensor defined below:

f i j = 1

2
( f i j + f ji) − 1

3
δi j fkk (3)
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