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In this paper, combined with the direct approach, particle swarm optimization (PSO) is applied to low-
thrust trajectory optimization problems. A double-loop trajectory optimization algorithm is developed.
The outer loop of this algorithm is a modified PSO optimizer, which can deal with constrained
optimization problems and avoid premature convergence. The function of the outer loop is generating a
series of time histories of control, called particles, and driving the particles toward the optimal solution.
The direct approach (fourth-order Runge–Kutta shooting/parallel shooting method) is adopted as the
inner loop algorithm, whose main task is to correct the particles provided by the outer loop and ensure
that all the constraints are satisfied. This algorithm has the global search feature of the PSO and the
relative large radius of convergence of the direct approach. Its efficiency is substantiated by solving
a fixed-time fuel-optimal transfer problem from an asteroid to the Earth. Furthermore, this algorithm
can be considered to be a universal low-thrust optimizer, and it can easily be used to solve more
complex trajectory optimization problems such as multi-swingby problem and multidisciplinary design
optimization (MDO) problems.

© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Most successful trajectory optimization methods are gradient-
based, mainly due to their computational efficiency. However,
these algorithms are local in nature and it is easy for the so-
lution to get trapped in a local minimum. To avoid this, global
rather than local search must be performed. In recent years, inter-
est in the application of evolutionary algorithms (EAs) to trajectory
optimization has grown, substantially due to their global search
capabilities. In Ref. [8] a genetic algorithm (GA) [11] was used
to adjust the direction of low-thrust engine on discrete nodes di-
rectly. The GA can also be employed to optimize the time history
of control parameterized by polynomials [28], or used to solve the
discrete-continuous optimization problem [29]. In Ref. [30], differ-
ential evolution (DE) [23] and simulated annealing (SA) [5] are
used to optimize low-thrust trajectories modeled as a series of
impulses connected by conics. The evolution branching technique
(EB) is widely applied in the initial design of the low-thrust trajec-
tories [7,24].

Another type of EA, particle swarm optimization (PSO) [25],
is considered in this work. The PSO was first introduced by
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Kennedy and Eberhart [13] based on observation and simulation
of the social behavior of flocks of birds or schools of fish. In this
algorithm the optimal solution is sought by moving a swarm of
particles around in the search space according to simple math-
ematical rules. The movement of each particle is determined by
its best known position and the best position achieved by the en-
tire swarm. The algorithm is simple and can be implemented in
a few lines of computer code. Moreover, it is gradient-free and
can solve irregular optimization problems. These characters make
PSO an easy-to-use algorithm for real-life problems such as the
trajectory optimization [9,12,20], and multidisciplinary design op-
timization (MDO) [21]. However, the basic PSO algorithm is unable
to deal with constrained optimization problems. Constraints are
dealt via the penalty approach with quadratic penalty functions
or barrier functions [19,21]. Choosing the value of the penalty
factor is a difficult problem: if the penalty factor is high, the opti-
mization algorithms usually get trapped in local optimal solutions.
On the other hand, if the penalty factor is low, feasible solutions
can be barely detected. The PSO used in this paper is modified.
The velocities of particles which violate one or more constraints
are updated by a modified formula [26], which causes the parti-
cles to move towards a feasible region. Additionally, the so called
craziness operator is adopted to avoid premature convergence of
the PSO.
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In this work, a double-loop low-thrust trajectory optimizer is
developed. The outer loop is the modified PSO optimizer. In its
first iteration it generates a series of time history of control ran-
domly by utilizing conjugate equations in Pontryagin’s maximum
principle [4]. Here the time history of control is denoted by the ini-
tial values of the conjugate states. These sets of conjugate states,
called particles, are then driven toward optimal positions or the
feasible region in subsequent iterations. A direct approach (fourth-
order Runge–Kutta shooting/parallel shooting method) is adopted
in the inner loop, which is used to find the local optimal or feasi-
ble solution by refining the time histories of the control provided
by the outer loop as much as possible. This algorithm possesses
the global search behavior of the PSO and the relative large radius
of convergence of the direct approach. Moreover, the optimization
variables without any gradient information can be added into the
outer loop directly enabling it to be easily adopted in multidisci-
plinary design optimization (MDO).

The rest of this paper is organized as follows. Section 2 is the
problem statement. Section 3 presents the methodology, includ-
ing the structure of the algorithm, the details of the outer loop
and inner loop algorithms, application in MDO and paralleliza-
tion strategies. Section 4 discusses the computational efficiency of
the three different inner loop strategies, and presents an example
of the low-thrust trajectory optimization from an asteroid to the
Earth. Section 5 concludes this paper.

2. Problem statement

In celestial mechanics, Lambert’s problem is defined as finding
the trajectory r(t), which satisfies the two-body dynamical equa-
tions and the specified boundary conditions r(t0) and r(t f ). For
a spacecraft with solar electric propulsion (SEP) in a central force
field, the similar problem is called the low-thrust Lambert prob-
lem [2], which can be summarized as an optimal control problem
stated in Mayer form:

max
u(t)∈(PWC[t0,t f ])

J
[
u(t)

]
, J

[
u(t)

] = m(t f ),

u(t) = [
γ (t), T (t)

]T
(1)

subject to the differential equations

ṙ = v

v̇ = −μ

r3
r + T

m
γ

ṁ = − T

g0 Isp
(2)

and the boundary conditions

r(t0) = r0, v(t0) = v0, m(t0) = 1 (3)

r(t f ) = r f , v(t f ) = v f (4)

In Eq. (1), u(t) denotes the time history of the control, which
is a piecewise continuous function between the initial time t0 and
the final time t f . u consists of two control variables, γ and T ,
where γ is a unit vector denoting the direction of thrust in the
heliocentric inertial frame. It can be expressed in terms of two
angles

γ = [cosβ cosα, cosβ sinα, sinβ]T (5)

where α ∈ [0,2π ] and β ∈ [−π/2,π/2]. T ∈ [0, Tmax] is the vari-
able magnitude of the thrust. Eqs. (2) are the equations of motion.
r and v are the position and the velocity of the spacecraft in
the heliocentric inertial frame, respectively. m is the instantaneous
mass of the spacecraft. Isp is the specific impulse of the thruster,

and g0 = 9.80665 m/s2 is the acceleration of gravity at sea level.
The gravitational constant of the Sun μ is 1.32712440018 ×
10−11 km3/s2. In the low-thrust Lambert problem, the initial mass,
initial states, and the final states are fixed. Eqs. (3), (4) are the
boundary conditions at the initial and the final time. For con-
venience of computation, the length, time, and mass are nondi-
mensionalized by using the astronomical unit (AU = 1.4959787 ×
108 km), astronomical time (TU = 5.02264285645364×106 s), and
the initial mass m0. Accordingly, the dimensionless velocity, ac-
celeration and force units are AU/TU, AU/TU2 and m0 · AU/TU2,
respectively.

In this paper the optimal control problem is not solved by an
indirect method, but an indirect approach is adopted to generate
the initial guess of the control. From Pontryagin’s minimum princi-
ple, the Hamiltonian of the dynamical system denoted by Eq. (2) is

H = λr · v + λv

(
−μ

r3
r + T

m
γ

)
− λm

T

g0 Isp
(6)

where, λr , λv and λm are the time-varying Lagrange multipliers.
The optimal controls which minimize the Hamiltonian are

γ ∗ = − λv

‖λv‖ (7)

T ∗ = 0 if HT > 0
T ∗ = Tmax if HT < 0
0 < T ∗ < Tmax if HT = 0

where HT is switching function defined as

HT = −‖λv‖
m

− λm

g0 Isp
(8)

Generally, HT equals to zero only at finite isolated points, so
the magnitude of T can only be chosen to be either zero or Tmax
(bang-bang control). The costate differential equations are given as

λ̇r = λv
μ

r3
− 3λT

v r

r5
r

λ̇v = −λr

λ̇m = −‖λv‖ T

m2
(9)

The final mass m(t f ) is free. From the transversality condition,
the final value of the costate corresponding to the mass is

λm(t f ) = 0 (10)

Thus the optimal control problem has been transformed into
a two-point boundary-value problem (TPBVP), which consists of
the differential equations, Eqs. (2), (9), and boundary conditions,
Eqs. (3), (4), (10). Generally, the TPBVP has more than one solution,
each of them corresponding to a local optimal low-thrust transfer
orbit.

3. Methodology

3.1. Algorithm structure

To find the global optimal solution of the low-thrust Lambert
problem, a double-loop algorithm is used. The outer loop of this
algorithm is a modified PSO, which provides the global behav-
ior of the algorithm. The inner loop is a gradient-based algorithm
(GBA), which is used to find the local optimal or feasible solu-
tions near the initial guesses provided by the outer loop. Ideally,
any gradient-based algorithm can be used as the inner loop al-
gorithm. In this research, Runge–Kutta fourth-order shooting/par-
allel shooting methods are adopted. The structure of the algo-
rithm is shown in Fig. 1. First, the initial swarm, consisting of NP
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