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The development of a general Jacobian-free approach for the solution of large-scale global linear
instability analysis eigenvalue problems by coupling a time-stepping algorithm with industry-standard
second-order accurate aerodynamic codes is presented. The three-dimensional lid-driven cavity,
a challenging flow in the context of required computational resources and physical complexity, has been
chosen for validation. Results in excellent agreement with the literature have been obtained by using the
proposed theoretical methodology coupled with the incompressible solver of the open-source toolbox
OpenFOAM. The moderate computational resources required for the solution of the TriGlobal eigenvalue
problem using this method opens up a new avenue for the performance of instability analysis of flows
of engineering relevance.

© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Global linear instability analysis theory [76] plays an essential
role in the investigation of the sequence of physical mechanisms
leading laminar flow in complex, spatially inhomogeneous geome-
tries through transition to turbulence. The theory deals with the
temporal and spatial evolution (growth/decay) of small-amplitude
perturbations superimposed upon a steady or unsteady laminar
base flow. The assumption of asymptotic (long-time) instability
leads to a generalized large-scale eigenvalue problem, the chal-
lenging numerical solution of which provides the spectrum of
linear global modes composed of the modal frequencies and am-
plification/damping rates. Such numerical solution can be obtained
within a matrix-forming or a matrix-free/Jacobian-free framework.
The main difference between the two approaches is that matrix-
forming strategies provide access to larger subsets of the full spec-
trum at the cost of large computational memory (RAM memory)
while matrix-free methods provides smaller subsets of the full
spectrum at the cost of long time integration (CPU time). Both
frameworks make use of subspace projection-iterative methods
such as the Arnoldi iteration, based on the Krylov-subspaces [67,7],
which is one of the most effective techniques to solve the resulting
generalized eigenproblem when formation of the full discretized
matrix is impractical due to the problem size. The Arnoldi method
delivers a window of the eigenspectrum but favors the eigenvalues
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with the largest modulus, thus a transformation of the spectrum is
required in order to introduce an eigenvalue shift towards the in-
teresting part of the spectrum. The shift-invert transformation was
first introduced in fluid mechanics in a matrix-forming context by
Natarajan and Acrivos [57], while the time-stepping exponential
transformation was first developed by Erikson and Rizzi [28] in
a Jacobian-free framework. A recent review [76] provides a dis-
cussion of the suite of matrix transformation methods used up to
the time of writing that article, while recent progress and chal-
lenges using these two frameworks has been recently presented
by Gómez et al. [34].

Although a large number of studies using the two different
frameworks have reported significant insight in instability mech-
anisms over the last four decades in relatively complex flows with
one homogeneous spatial direction, such as attachment lines [62]
or open cavities [19], most flows of practical engineering signifi-
cance still remain unexplored. The principal reason arises from the
difficulties associated to the analysis of turbulent flows, an issue
not discussed here; the interested reader is referred to the works
of Biau et al. [13] and Nichols and Lele [58] amongst others. The
second reason for the relatively little attention paid to the analysis
of flows of industrial interest is that basic state of most practical
flows are three-dimensional depending in an inhomogeneous man-
ner on the three spatial directions, and no assumptions regarding
spatial homogeneity can be made; the related analysis context is
known as TriGlobal linear stability. Although the single parame-
ter of the instability problem in this situation in incompressible
flow is the Reynolds number, the cost of performing a complete
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Nomenclature

x, y, z Spatial coordinates
ū Base flow components
u′ Perturbation components
Re Reynolds number
λ Eigenvalue in the stability analysis
û Eigenvector in the stability analysis
Km Krylov subspace
m Krylov subspace dimension
τ Integration time

A Jacobian matrix
H Hessenberg matrix
ε Perturbation magnitude
εm Numerical tolerance
εo Initial order of perturbation magnitude
ε(t) Integration residual at time t
�t Time step in temporal integration
CFL Courant number
N Number of nodes in one spatial direction

parametric instability analysis can be prohibitively expensive when
the matrix discretizing the eigenvalue problem is solved in a dense
matrix-forming framework, as inferred from the work of Rodriguez
and Theofilis [66], in which a O (1) Tb RAM memory matrix was
formed, stored and inverted for the solution of a BiGlobal problem.

Despite the fact that a high-order sparse matrix-forming
method has recently been shown to provide O (104) speed-up
with respect to dense matrix-forming approaches [60], matrix-
free methods remain the method of choice for TriGlobal linear
instability analysis problem; a case study was provided by Gómez
et al. [36,35]. The key advantage of matrix-free time-marching
methods, over explicit formation of the Jacobian matrix is that
the large-sized matrices describing spatial discretization of global
linear instability analysis applications in both two or even more
so in three inhomogeneous spatial directions resolved in a cou-
pled manner is never formed. This enables the study of global
linear stability problems on small-main-memory machines at the
expense of long-time integrations. A rather complete discussion
of time-stepping approaches for global linear instability has re-
cently been presented by Barkley, Blackburn and Sherwin [11].
The first successful time-stepping methodology by Erikson and
Rizzi [28] introduced a numerical differentiation of the DNS used
with a temporal polynomial approximation. In that work, finite
differences were used in order to study an inviscid incompress-
ible flow over a NACA airfoil. Chiba [22] improved the Erikson and
Rizzi approach by introducing a temporal exponential transforma-
tion using a full Navier–Stokes equations solver. Following Chiba’s
method, Tezuka and Suzuki [71,72] successfully solved the first
TriGlobal problem ever. In parallel, Edwards et al. [27] developed
a time-stepping methodology in conjunction with the linearized
Navier–Stokes equations, which has been successfully used and
popularized by Barkley et al. [10], Tuckerman et al. [79] and many
others. Although these previously mentioned algorithms are able
to provide only a part of the spectrum, recent matrix-free algo-
rithms can provide access to the full spectrum using time-stepping
approaches, e.g. Bagheri et al. [8] and elsewhere [54,61].

Despite these new capabilities for global stability analysis that
recent sparse matrix-forming and matrix-free algorithms offer,
only a number of canonical configurations with three inhomoge-
neous spatial directions have been analyzed with respect to their
linear instability; to the best of the knowledge of the authors,
these are the above-mentioned spheroid [72], an incompressible
jet in a cross flow [9], sphere [59], and the three-dimensional,
lateral-wall-bounded lid-driven cavity [32,53,30,35]. This lack of
TriGlobal analyses in the literature can be attributed to the fact
that the time-stepping matrix-free methodology requires a three-
dimensional Direct Numerical Simulation (DNS) solver and the de-
velopment and validation of a three-dimensional DNS capable of
handling different geometries is non-trivial.

The goal of the present work is to present an algorithm for
TriGlobal modal linear instability analysis that can overcome the
excessive computational requirements of the matrix-forming tech-

niques and the necessity of developing a three-dimensional direct
numerical simulation solver for the specific task. This is accom-
plished by linking matrix-free/Jacobian-free instability algorithms
with existing general purpose aerodynamic codes, the latter run
in direct numerical simulation mode. Moreover, the necessity of
flexibility and ability to handle complex geometries makes second-
order standard aerodynamic codes the first candidate to be ex-
amined regarding their suitability for TriGlobal instability analysis.
Although no work is known to date that deals with the numerical
solution of large-scale TriGlobal eigenvalue problems using stan-
dard aerodynamic codes, leaving most problems of practical engi-
neering significance still unexplored, second-order methods have
been already successfully used in global linear instability theory
both for the solution of the BiGlobal [25,56,43,4,5] and that of
the TriGlobal linear EVP [32]. High-order accurate spectral element
methods [45,15,77] or even finite elements [37,39] may provide a
better convergence rate for a given resolution than second-order fi-
nite volumes methods while maintaining geometry flexibility, how-
ever the open-source code OpenFOAM code based on second-order
finite-volume spatial discretization has been chosen for this work
because of its flexibility, ease of performing source-code modi-
fications and the ability this code offers to study different flow
regimes in future research.

The three-dimensional, lateral-wall-bounded lid-driven cavity
was chosen as a demonstration problem for TriGlobal linear in-
stability analysis, since it permits examining two different aspects:
physical complexity and computational efficiency. In addition, the
non-unity aspect ratio configuration of this cavity flow, though
well-studied from an experimental and a three-dimensional DNS
point of view, has never been addressed as regards its TriGlobal
linear instability.

From the point of view of physical complexity, the accurate
description of the fully three-dimensional lid-driven cavity flow
still remains inconclusive in many aspects, as stated in the recent
work by Feldman & Gelfgat [30], although the analysis of the two-
dimensional counterpart of the lid-driven cavity flow has become
a benchmark problem in fluid mechanics and has been extensively
reviewed [70,29,18].

The main reason for this lack of understanding is that the
three-dimensional lid-driven cavity flow, as found experimentally
by Koseff and Street [49,50] and numerically by Iwatsu et al. [42,
41], presents a far more complicated structure that cannot be di-
rectly compared to the corresponding two-dimensional flow. The
most important three-dimensional flow features are the Taylor–
Görtler-Like (TGL) vortices [49,69] and corner eddies or end-wall
vortices (EWV) [20,63] in the flow field. Fig. 1 shows schemat-
ically the geometry and the rest of flow features: primary eddy
(PE), downstream secondary eddy (DSE), upstream secondary eddy
(USE) and upstream upper eddy (UUE). Aidun et al. [1] performed
lid-driven cavity experimental visualizations, presenting an excel-
lent qualitative description of the state diagram of TGL structures
and demonstrated the existence of different branches of n-cell
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