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In the present paper, a new multi-objective technique using Holistic Concurrent Design (HCD) is
applied to optimize multidisciplinary design of Space Launch System (SLS). The HCD methodology could
effectively be used to find the overall satisfaction of objective functions (selecting the design variables)
in the early stages of design process. Furthermore, the HCD formally reduces the multi-objective
constrained optimization problem to a single-objective unconstrained optimization. The coupling of
objective functions due to design variables in an engineering design process will result in difficulties in
design optimization problems. The most important selected disciplines to improve the mass and energy
characteristics of SLS are propulsion and structure. Then, the design problem is established using the
fuzzy rule set based on designer’s expert knowledge with a holistic approach. The independent design
variables in this model are nozzle exit pressure, combustion chamber pressure, oxidizer to fuel mass flow
rate (O/F), stringer thickness, ring thickness, shell thickness. To handle the mentioned problems, a fuzzy
– Multi-Objective Genetic Algorithm (MOGA) optimization methodology is developed based on the Pareto
optimal set. The obtained results show a very good performance of the HCD technique to find the overall
satisfaction and communication enhancement between designer with various backgrounds and clients.
Consequently, this methodology will be evaluated and validated with one of the stages of the existing
SLS.

Crown Copyright © 2014 Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Multidisciplinary engineering systems are complex systems
whose interconnected subsystems belong to different physical do-
mains. Traditional design methodologies for such systems rely on
subsystem partitioning, and hence they often result in more it-
eration and less desirable outcomes. Whereas traditional design
methodologies suffer from the aforementioned drawback, a con-
current approach emphasizes the physical integration and commu-
nication amongst the subsystems.

As research on Multidisciplinary Design Optimization (MDO)
has matured, the number of methods available to solve a given
problem has increased. These methods can be divided into two
classes: monolithic formulations and multilevel formulations. Mo-
nolithic formulations, which include the multidisciplinary design
feasible (MDF), the simultaneous analysis and design (SAND) and
all at once approaches, use a single system-level optimizer for the
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whole problem. However, the challenge is to consider a large num-
ber of design variables and attributes simultaneously [6,35,36].

Researchers have developed different MDO formulations [16,17,
24] suitable for various applications [7,45,33,29,18,38].

Multilevel methods such as collaborative optimization (CO) [8],
concurrent subspace optimization (CSSO) [49], and bi-level inte-
grated systems synthesis (BLISS) [43] use subspace optimizations
to promote discipline autonomy. The system level optimizer is then
responsible for managing the interactions between the discipline
optimizations and also this approach mimics an industrial setting.
With the various MDO methods available, how does one decide
which one to use for a given MDO problem? Typically, the selec-
tion of an MDO method is done in an ad hoc manner, since few
benchmarking studies are available to make an informed decision
[4]. Results from various studies have shown that the performance
of a method can be dependent on its implementation, the charac-
teristics of the problem being solved, and the optimizer employed
[4,10,39]. Furthermore, for some problems, specific methods may
either fail to return an optimum, or may not be suited to imple-
mentation [10]. Additionally, comparing the results between the
studies can be difficult as the performance of an MDO method can
depend on specific implementation details [51].

Moreover, after selecting an MDO method, it can be difficult
to determine its proper or most efficient implementation. In the
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case of collaborative optimization, there are at least four major
variants [5,42,9]. Though many of the implementations have been
used to solve specific problems, there has been no study that has
thoroughly tested each implementation in a statistically significant
manner. Therefore, it is left to the practitioner to search through
the literature, in an attempt to find an implementation that may
work well for their particular problems [47].

As the review of the foregoing papers, these MDO disadvantages
influenced the development of the Holistic Concurrent Design
(HCD) methodology [12]. This paper introduces the HCD method-
ology that addresses the above-reminded issues. The methodol-
ogy utilizes the tools of fuzzy logic to systematically define some
subjective aspects, such as satisfaction, preference, and designer’s
attitude, which play a vital role in a design process in addition
to objective aspects in the form of design attributes. Further, the
HCD formally reduces the multi-objective constrained optimization
problem to a single-objective unconstrained optimization problem.
Consequently, not only does the HCD facilitate the communication
between different disciplines, but it also results in a more practical
solution for a Multi-objective Multidisciplinary Design Optimiza-
tion (MMDO) problem. In order to adjust the subjective notions
considered in the optimization model, the methodology examines
the set of satisfactory design candidates against a performance su-
per criterion that is defined based on a holistic multidisciplinary
model of the system [13]. Another recent study, discussed a practi-
cal approach to the concurrent design of robot manipulators, which
is based on HCD, as well as the utilization of a modular hardware-
in-the-loop simulation [15].

The developed tools are intended to help to select the proper
specifications of the design variables of SLS without going through
elaborate details of other direct approaches. Then, this methodol-
ogy utilizes the revealed research advantages and removes their
disadvantages to apply HCD methodology in liquid propellant SLS.
The HCD methodology can be used in MMDO problems.

The future work would be developing the framework of HCD
reliability based design [2,3,37], risk identification, assessment and
management [34].

Hence, the organization of the paper is as follows. In Section 2,
the HCD methodology is described. In Section 3, Multi-Objective
Genetic Algorithm (MOGA) is introduced. In Section 4, the SLS sub-
systems selection and their important parameters are presented in
details. In Section 5, the presentation and evaluation of the Liquid
Propellant Space Launch System HCD methodology are outlined.
Finally, in Section 6, conclusions are drawn.

2. HCD methodology

2.1. Formulation of design process

A design problem consists of two sets: design variables X =
{X j} = ( j = 1,2, . . . ,n) and design attributes A = {Ai} = (i =
1,2, . . . , N). Design variables are to be configured to satisfy the
design requirements assigned for design attributes, subject to the
design availability D = {D j} = ( j = 1,2, . . . ,n). Each design at-
tribute stands for a design function providing a functional mapping
Fi : X → Ai that relates a state of design configuration X to the at-
tribute Ai , i.e., Ai = Fi(X) (∀i ∈ [1, N]). These functional mappings
can be of any form, such as closed-form equations, heuristic rules,
or sets of experimental or simulated data. A design process can
be defined as a multi-objective optimization subject to a number
of constraints on the design variables and attributes due to the
design availabilities and design requirements specified by the cus-
tomer.

min
X∈D

[
F1(X), . . . , F NW (X)

]T

subject to
{

Fi(G) ∈ Gi, Gi ⊂ R, i = NW + 1, . . . , N
}

(1)

where NW and NM ≡ N − NW are the number of attributes that
should be optimized and the number of constraints, respectively.

The process of HCD is performed in three phases: (i) primary
phase in which proper intervals for the design variables are iden-
tified subject to design availability; (ii) secondary phase in which
design variables are specified in their intervals in order to max-
imize an overall design satisfaction based on the design require-
ments and (iii) performance super criterion that is the criteria for
evaluation of the best known solutions. Thus, the secondary phase
will involve optimization of a single-objective function, yet it is
critically dependent on the initial values of a large number of de-
sign variables. The primary phase makes the optimization more
efficient by providing proper intervals for the design variables from
where initial values are selected. The overall satisfaction is an ag-
gregation of satisfactions for all design attributes. The satisfaction
level depends on the designer’s attitude that is modeled by fuzzy
aggregation parameters. However, different designers may not have
the consensus of opinion on satisfaction. Therefore, the system per-
formance must be checked against a holistic super criterion to
capture the objective aspect of design considerations in terms of
physical performance. Designer’s attitude is adjusted through it-
erations over both primary and secondary phases to achieve the
enhanced system performance. Consequently, the HCD process is
satisfaction-driven, using iterations to proceed to a higher degree
of satisfaction until the ultimate achievement of the system perfor-
mance. Therefore, this methodology incorporates features of both
human subjectivity (i.e., designer’s intention) and physical objectiv-
ity (i.e., performance characteristic) in multidisciplinary engineer-
ing design.

Satisfaction: A mapping μ such that μ : Y → [0,1] for each mem-
ber of Y is called satisfaction, where Y is a set of available design
variables or design attributes based on design requirements. The
grade one corresponds to the ideal case or most satisfactory situ-
ation. On the other hand, the grade zero means the worst case or
least the satisfactory design variable or attribute.

In HCD the design attributes are divided into two subsets:

Must design attributes (M): A design attribute is called must if it
refers to customer’s demand, i.e., the achievement of its associated
design requirement is mandatory with no room for compromise.

Wish design attributes (W ): A design attribute is called wish if it
refers to customer’s desire, i.e., its associated design requirement
permits room for compromise and it should be achieved as much
as possible [12].

Therefore,

M ∩ W = φ, M ∪ W = A (2)

The satisfaction specified for wish attributes W i (i = 1,2, . . . , NW )

is wi(X) = μW i (X), and the satisfaction specified for must at-
tribute Mi (i = 1,2, . . . , NM) is mi(X) = μMi (X). For each design
attribute Ai (corresponding to either Mi or W i ), there is a pre-
defined mapping to satisfaction ai (mi or wi ), i.e., {(Ai,ai): ∀i ∈
[1, N] Ai ∈ A}. Consequently, fuzzy set theory can be employed for
defining the satisfactions through fuzzy membership functions and
also for aggregating the satisfactions using fuzzy-logic operators.

Overall satisfaction: For a specific set of design variables X , overall
satisfaction is the aggregation of all wish and must satisfactions, as
a global measure of design achievement.

2.2. Calculation of overall satisfaction

Must and wish design attributes have inherently-different char-
acteristics. Hence, appropriate aggregation strategies must be ap-
plied for aggregating the satisfactions of each subset. Aggregation
of must and wish satisfactions have shown in [19,50].
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