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The controllability analysis and attitude path planning are addressed for an underactuated spacecraft
using two flywheels as actuators. Considering the spacecraft and flywheels as a whole system, we
describe the dynamics of the system on an angular momentum level set such that the system is
controllable with arbitrary initial momentum and direction of the torque singular vector. Moreover, an
optimal performance index is proposed with the influence of friction torques in flywheels considered.
With this index being optimized, Gauss Pseudospectral Method (GPM) is used to design the attitude path
of the system, which satisfies the spacecraft maneuver requirement. Finally, simulation results show the
effectiveness of the attitude path planning method.
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1. Introduction

In aerospace applications, flywheels are widely used as actua-
tors in small spacecrafts for their small masses, high precision and
no consumption of propellant [14]. Since one flywheel can only
produce control torque in a single direction, flywheels are used
in arrays consisting of more than three flywheels to obtain torques
along three independent directions, as well as redundancy. In long-
time operation, a common problem is the failure of flywheels on-
board a spacecraft. A possible result is that only two-dimensional
torques are available for attitude control. In this case, the actuators
are equivalent to two flywheels with their rotation axes installed
along any two independent directions, and the system consisting of
the spacecraft and flywheels is referred to as ‘underactuated’ [11].

The problem of attitude control of an underactuated spacecraft
has been intensely investigated. Crouch first discussed the con-
trollability of an underactuated spacecraft controlled with either
jets or flywheels, and concluded that the system with less than
three momentum wheels is never controllable [6]. Byrnes proved
that such a system is impossible to be stabilized via smooth state
feedback since the Brockett’s necessary condition is violated [5].
M.H. Nadjim proposed a control algorithm for a spacecraft with
two flywheels [15]; X. Ge solved the control of the underactuated
spacecraft by using attitude motion planning, which is proved ef-
fective [8].
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In the above analysis, it is noted that the controllability anal-
ysis of the system is based on the dynamics and kinematics of
the underactuated spacecraft, and the controllers are designed
based on the assumptions that the total angular momentum of
the underactuated spacecraft is zero, and the normal vector of
the control torque plane is along the principal inertia axis of the
whole system. Indeed, since the flywheels can only produce two-
dimensional torques, without these two assumptions, the system is
never controllable on the underlying state space where the quater-
nion and angular rates are taken as state variables. However, we
found that the system is controllable on a smaller level set, that is
‘momentum level set’, the introduction of which greatly promoted
the usage of flywheels as actuators on spacecraft. It follows that
these assumptions described a special case of momentum level set.

Since the strict assumptions limit the application of flywheels
as actuators, a practical problem, never addressed as far as we
know, is how to control an underactuated spacecraft using two
flywheels with arbitrary initial momentum and arbitrary normal
vector of the control torque plane. In this paper, the controllabil-
ity analysis of a spacecraft with two flywheels is conducted on the
angular momentum level sets, and the attitude path planning is
designed.

In Section 2, mathematical model is constructed with the
spacecraft and flywheels considered as a whole system. Differently
from the mathematical description proposed by Crouch [6], the
dynamics of the whole system is described on an angular mo-
mentum level set, on which the controllability of the system is
discussed. Based on the conclusion of the controllability analysis,
in Section 3, an optimal performance index is proposed for the sys-
tem, and GPM is used to design the attitude path of the system. In
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Section 4, simulation of the system is conducted. We conclude the
paper with Section 5.

2. Controllability analysis of the underactuated spacecraft

In R4, we define the set ℵ as a sphere with radius 1. Obviously,
ℵ is compact. The attitude kinematics of the spacecraft is described
as follows [10]:

q̇ = ξ(q)ω = 1

2

⎡
⎢⎢⎣

q4 −q3 q2
q3 q4 −q1

−q2 q1 q4
−q1 −q2 −q3

⎤
⎥⎥⎦ω (1)

where q = [q1 q2 q3 q4]T ∈ ℵ is the quaternion of the spacecraft
attitude, which satisfies the following identity:

q2
1 + q2

2 + q2
3 + q2

4 = 1

ω = [ω1 ω2 ω3]T is the angular velocity vector. The rotational dy-
namics of the rigid spacecraft with n flywheels is given by [12,22]:

Iω̇ = ω × B H 0 +
n∑

i=1

bi ji θ̈i (2)

where I is the inertia matrix, B is the transition matrix of the sys-
tem, depending on the quaternion, bi is the unite vector along the
rotation axis of the ith flywheel in body coordinate; ji , θ̈i are the
momentum inertia and the angular acceleration of the ith flywheel
about the axis bi respectively. H 0 is the initial angular momentum
of the whole system, i.e.

B H 0 = Iω +
n∑

i=1

bi ji θ̇i (3)

which can be derived via the law of angular momentum conserva-
tion. We define the matrix A as follows

A = [b1, . . . ,bi, . . . ,bn]
The spacecraft described by Eqs. (1) and (2) is obviously control-
lable on the set M = ℵ× R3, if the rank r0 of the matrix A equals 3.

In order to analyze the controllability of the system consisting
of the spacecraft and two flywheels, the following two lemmas are
given as the main tools [3,4,20,21].

Lemma 1 (Poincaré). Let (ℵ,Ω) be a manifold with a volume form Ω

and nΩ its Borel measure. Let f a be a time-independent, complete vec-
tor field such that its flow φt , t ∈ R, preserves the volume. Suppose A
is a measurable subset of ℵ with 0 < nΩ(A) < ∞, which is also in-
variant under the flow of f a. Then for each measurable subset B of
A with nΩ(B) > 0 and for any T > 0, there exists a t > T such that
φt(B) ∩ B �= ∅.

Lemma 2. For the system

ẋ = f (x) +
m∑

i=1

g i(x)ui, u = [u1, . . . , um]T ∈ Rm

suppose that f is a Weak Positive Poisson Stability (WPPS) vector field.
The system is controllable if F = { f , g} satisfies the Lie Algebra Rank
Condition (LARC).

For the underactuated spacecraft using two flywheels, we de-
note the two independent rotation axes of the flywheels by b1 and
b2. In such a case, the rank r0 of the matrix A equals 2. The fly-
wheels cannot produce any momentum vector change or torque

along the direction of v = b1×b2|b1×b2| . Such a unit vector v is called
the singular direction, which satisfies the following equation:

vT B H 0 = vT Iω + vT
2∑

i=1

bi ji θ̇i (4)

where vT ∑2
i=1 bi ji θ̇i is constant. Eq. (4) is a physical constraint.

First we consider a special case of operation: assume the initial
angular momentum is zero, i.e. H 0 = 0, and the unit vector v is
along the principal inertia axis of the whole system. In this case,
Eqs. (1) and (2) satisfy the LARC. In addition, the drift vector of
Eqs. (1) and (2) is Poisson stable [6]. Using Lemma 2, we know
that the underactuated spacecraft is controllable on the set M .

Remark 1. The two assumptions, together with Eq. (4) guaranteed
ωi ≡ 0, i = {1 or 2 or 3}, which can be removed from the states
variables of the system. So the dimensions of Eqs. (1) and (2) are
reduced. The state equations describing the system on the set M =
ℵ × R2 satisfy the LARC.

For the flywheels onboard a spacecraft, the friction due to low
angular rates will introduce an obvious influence on the precision
of output torques. The preset initial angular velocities with certain
magnitudes will exclude this situation. Furthermore, the singular
direction v deviates from any principal inertia axis of the whole
system due to the existence of the inertia products and the ar-
rangement of the flywheels. For these reasons, the system fails
to meet the assumptions mentioned above, it follows that system
does not satisfy the LARC, and is uncontrollable on the set M .

To investigate the controllability of the system, the dynamics of
the system is described on an angular momentum level set. We
define H0 ∈ R3 as the initial angular momentum of the system;
θ̇ = [θ̇1 θ̇2] ∈ R2 as the angular velocity of the flywheels, NH0 ⊆
ℵ × R3 × R2 as the corresponding angular momentum level set.
According to Eq. (3), the map

α : ℵ × R2 → ℵ × R3 × R2

given by

f H 0 =
(

q, I−1

(
B H 0 −

2∑
i=1

bi ji θ̇i

)
, θ̇

)

is a diffeomorphism between ℵ × R2 and N H 0 . The kinematics of
the spacecraft is rewritten as:

q̇ = ξ(q)I−1

(
B H 0 −

2∑
i=1

bi ji θ̇i

)
(5)

The state equation of the underactuated spacecraft with two
flywheels is rewritten as:

ẋ = f (x) + gu (6)

where x = [q θ̇]T, and the control input u = [u1 u2]T ∈ R2 is the
angular accelerations of the flywheels. Eq. (6) is an affine nonlinear
system, with the drift vector field f (x) being:

f (x) =
[

fα(x)

[0]2×1

]
(7)

where [0] is the null matrix with an appropriate dimension,
f α(x) = ξ(q)I−1(B H 0 − ∑2

i=1 bi ji θ̇i). The control vector fields g1
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