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Operational load and stress data are useful for structural integrity management and damage prognosis
of aerospace systems. Identifying aerodynamic loads by monitoring strain is not easy because the loads
are distributed continuously over the structure’s surface. In this study, we propose a flexible method
for interpolating a continuous load distribution in order to identify the full-field aerodynamic load
from strain data acquired at a number of discrete points. Our method uses the conventional finite
element method and pseudo-inverse matrix, and we further extend it by coupling with an aerodynamical
equation. Numerical simulations show that this extension improves the estimation accuracy when only
a limited amount of strain data is available. The effects of measurement error are also discussed. It is
concluded that the rank reduction method improves the estimation accuracy and that use of a proper
aerodynamical restriction can suppress the adverse effect of measurement error.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

Structural Damage Prognosis (DP) is a promising technology
that is expected to be applied to aerospace systems in near future.
DP is defined as the estimation of a system’s remaining useful life
based on behavioral prediction models that combine information
from usage monitoring, structural health monitoring (SHM), past,
current and anticipated future environmental and operational con-
ditions, original design assumptions, component and system level
tests, and maintenance [7]. In discussing DP, Farrar et al. distin-
guish usage monitoring, the process of acquiring operational load
data from a structure or a system, from health monitoring, the
process of identifying the presence of damage and quantifying its
extent [6].

Günther has reviewed loads and usage monitoring programs in-
cluding new integrated systems [9]. Molent and Aktepe [15] and
Aktepe and Molent [1] have reviewed the Australian Individual
Aircraft Tracking (IAT) programs and concluded that IAT has been
beneficial in comparing operational usage with design one.

Although usage and load monitoring have a long history in the
field of aerospace, they continue to attract attention due to ad-
vances in sensors and data processing technologies. Current moni-
toring tools include flight hour/flight/landing cycle counting, and
fatigue metering based on load factor, strain gauges, etc. [15].
These tools determine the levels of overall flight loads, such as
wing root bending moment and/or torque [16].
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These monitoring systems and programs do not measure pres-
sure distributions or aerodynamic loads, although a better under-
standing of such loads would be useful and could improve fatigue
monitoring capabilities [4]. The objective of the present study is
to develop a method to identify continuously distributed (aerody-
namic) loads from strain data measured at discrete locations.

The determination of loads from measured structural responses
(strains) is an inverse problem. Mathematically, inverse problems
are ill-posed and their solutions do not necessarily satisfy con-
ditions of existence, uniqueness and stability. Therefore, a special
approach such as regularization is required to obtain an accurate
and stable solution.

Maniatty et al. investigated solutions for inverse elastic prob-
lems based on the finite element method with a regularization
procedure to impose smoothness on the solution [14]. Maniatty
also discussed the regularization procedure coupled with a statis-
tical approach [13].

Schnur and Zabaras studied spatial regularization and recom-
mended first-order regularization over zero- and second-order, but
noted that the selection of the regularization constants is difficult
[17]. They also introduced a polynomial approximation solution
technique called the keynode method which provides a stable so-
lution without regularization. Shkarayev et al. developed a finite
element based methodology involving an inverse formulation that
uses measured surface strains to recover applied loads [18]. They
employed a parametric approximation where regularization was
not required to obtain a stable solution. Coates et al. extended
Shkarayev’s method by approximating any function by its respec-
tive Fourier Cosine series and utilizing strain data to determine
the coefficients [5]. Kirby and co-workers presented shape recovery
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Nomenclature

er error factor
ERMS error root mean square
mp number of nodes for pressure
ms number of strain data
pi (i = 1, . . . ,mp) nodal estimated pressure

[s] or s ji ms × mp matrix to transform pi to εm
j

[s+] or s+
ji generalized inverse matrix of [s]

x, y, z Cartesian coordinates
β penalty number
εm

i (i = 1, . . . ,ms) measured strain data

for a beam based on strain data using a polynomial representa-
tion [12].

A learning algorithm for a multi-layer neural network was in-
vestigated by Cao et al. to determine the relationship between load
and strain [3,4]. This method can avoid the mathematical difficul-
ties inherent in inverse analysis but the mechanical ingredient of
the obtained network is not clear.

Recent developments in optical strain sensors provided another
motivation for this study. Fiber optic strain sensors (FOSS) have
many advantages over conventional strain gauges such as strength,
light weight, and immunity to electromagnetic interference and
moisture. One of the authors developed a long gauge FBG (Fiber
Bragg Grating) strain sensor using the OFDR (Optical Frequency
Domain Reflectometry) technique. OFDR has the exciting potential
to measure strains at arbitrary positions along a fiber [10,11]. Such
recent developments indicate that in the near future, strain data
measurements will be obtainable from thousands of points with
little effort. This will enable practical load identification techniques
based on inverse analysis, which requires a large amount of data
to give an accurate and stable solution.

Tessler and co-workers developed a novel inverse finite element
method (iFEM) to reproduce the full-field structural displacements
from measured surface strains in plate and shell structures [19,20].
A combination of FOSS and iFEM was shown to reconstruct the
full-field structural deformations of a cantilevered beam subjected
to an imposed near-tip deflection at the free end [21].

In the present study we propose a flexible representation of
continuous load distribution, and identify the full-field aerody-
namic load from strain data measured at a number of discrete
points using the conventional finite element method and a pseudo-
inverse matrix. A unique feature of our method is the use of a
mesh of triangular elements to approximately interpolate the con-
tinuous pressure distribution. This mesh is independent of the
finite element model of the structure and thus the degree of free-
dom of the inverse analysis and/or the locations of the nodes can
flexibly be controlled to obtain a stable solution. We further extend
the method by coupling with an aerodynamical equation. Numer-
ical simulations show that this extension improves the estimation
accuracy when only a limited amount of strain data is available.
Finally, the effects of measurement error are discussed.

2. Inverse analysis of pressure distribution

We consider a load (pressure) continuously distributed on the
x–y plane: p = p(x, y). Current methods can easily be applied
to the three-dimensional case. In the conventional finite element
method, a structure is modeled by a mesh and physical fields are
approximately represented by nodal values and interpolation func-
tions. Similarly, our method places a mesh of triangular elements
on the surface of a structure on which pressure is distributed. The
pressure inside each element pe(x, y) is approximately interpo-
lated as

pe(x, y) =
3∑

i=1

ne
i (x, y)pe

i , (1)

where the superscript e denotes a variable or function defined in-
side an element. pe

i and ne
i (x, y) (i = 1,2,3) are the nodal pressure

values and the linear interpolation functions, respectively.
By superposing Eq. (1), the entire pressure distribution is writ-

ten as

p(x, y) =
mp∑
i=1

p̂i(x, y), (2)

where

p̂i(x, y) = Ni(x, y)pi, (3)

mp is the total number of nodes, and pi (i = 1, . . . ,mp) are the
nodal values of the pressure. The full-field interpolation function
Ni(x, y) (i = 1, . . . ,mp) is obtained by superposing ne

i (x, y)’s.
We consider only the linear elastic problem. Then, the strain

field is expressed as the superposition of strains ε̂i which are
induced by pressures p̂i(x, y), and ε̂i is proportional to p̂i(x, y).
Thus, by writing ε̂i = ŝ′

i p̂i , we obtain the following equation for
the entire strain field ε = ε(x, y, z) of arbitrary components:

ε =
mp∑
i=1

ε̂i =
mp∑
i=1

ŝ′
i p̂i =

mp∑
i=1

ŝ′
i Ni pi =

mp∑
i=1

s′
i pi, (4)

where s′
i = ŝ′

i Ni .
Letting εm

j ( j = 1,2, . . . ,ms) be measured strain values (ms is
the number of strain measurements), Eq. (4) gives

εm
j =

mp∑
i=1

s ji pi, j = 1,2, . . . ,ms, (5)

where j is an index of the strain data. This equation shows that s ji

is the strain at the location where εm
j is measured setting pi = 1

at the i-th node (other pk = 0, k �= i). Thus the matrix s ji is easily
obtained by finite element analysis.

We solve Eq. (5) to recover the pressure distribution (pi , i =
1,2, . . . ,mp). Note that since ms �= mp in general, the matrix [s] is
not square. The most direct technique to solve this problem is to
use a generalized inverse matrix [s+] as follows:

pi =
ms∑
j=1

s+
i j ε

m
j , i = 1,2, . . . ,mp . (6)

This method will be employed in the next section.
Another way to solve Eq. (5) is to minimize the error between

the measured and estimated strain values. This procedure will be
employed in the later part of Section 4 when an aerodynamical
restriction is incorporated.

It is emphasized that the effect of structural deformation on
the pressure distribution (aeroelastic effect) is not considered in
the present study. Incorporation of aeroelastic effects remains an
important issue to be addressed in the future.
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