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Nonlinear equations in mathematical physics and engineering are solved by linearizing the equations and
forming various iterative procedures, then executing the numerical simulation. For strongly nonlinear
problems, the solution obtained in the iterative process can diverge due to numerical instability. As a
result, the application of numerical simulation for strongly nonlinear problems is limited. Helicopter
aeroelasticity involves the solution of systems of nonlinear equations in a computationally expensive
environment. Reliable solution methods which do not need Jacobian calculation at each iteration are
needed for this problem. In this paper, a comparative study is done by incorporating different methods
for solving the nonlinear equations in helicopter trim. Three different methods based on calculating the
Jacobian at the initial guess are investigated.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

The solution of a system of simultaneous nonlinear equations is
a cherished topic in numerical analysis. Many relationships in na-
ture are inherently nonlinear; the effects are not in direct propor-
tion to their cause. We can find considerable number of nonlinear
problems in engineering [19]. Until the advent of the latest genera-
tion of high speed supercomputers, it was highly impractical to use
memory intensive methods. However, today’s machines are allow-
ing researchers to reconsider memory intensive implicit schemes
like Newton’s method. The advantage in using these schemes lie
in convergence rates. However, these schemes have large CPU time
and memory requirements due to the complexity of the Jacobian
matrix formation and solution process. One approach is to update
select matrix entries only when necessary [14]. This idea lead to a
question of exactly how “correct” the Jacobian matrix must be in
order to obtain quadratic or better convergence. Hence there was a
need for a method that enjoys nearly quadratic convergence rates
and is at the same time computationally efficient in the Jacobian
matrix formation and inversion process.

Many possibilities exist for improving the performance of these
schemes including simplifying the Jacobian matrix formation and
solution process [7]. There have been several attempts to inte-
grate the quasi-Newton construction with structural properties of
the Jacobian of nonlinear systems which derive from approxima-
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tions to functional equations [8]. The objectives are to obtain the
rapid convergence rates of Newton-like iterative methods simulta-
neously with a reduction in the computational expense associated
with high-dimensional problems. The Jacobian is approximated by
a matrix rather than by calculating the first order derivatives. Sev-
eral Jacobian matrix simplification ideas for Newton method were
evaluated in the literature. Of several iterative methods available to
solve systems of nonlinear equations, one of the most sophisticated
procedures for constructing a new input quantity is the Broyden’s
method [4]. Although a Broyden rank-1 formula which is employed
to update the Jacobian approximation matrix gives good results, it
limits the freedom in changing the updated matrix components
which may slow the convergence. Hence, a novel modified BFGS
rank-2 update method [18] was developed for the nonsymmetric
case for which the Jacobian is a rectangular matrix. It provides bet-
ter convergence over the Broyden rank-1 update method for such
cases. In the current paper, all the afore mentioned methods are
used for solving the system of nonlinear equations involved in he-
licopter trim in rotor aeroelastic analysis.

Comprehensive helicopter rotor aeroelastic analysis typically in-
volves three nested iterative numerical schemes to solve for blade
response, vehicle trim and free wake inflow distribution on the ro-
tor disk. In general, the word “trim” is used to imply the correct
adjustment of aircraft controls, attitude and cargo in order to ob-
tain a desired steady flight condition [23,24,15,25]. For rotorcraft
analysis, the concept of trimmed flight implies the periodic dy-
namic solution to a system of nonlinear equations with unknown
parameters (like controls and airframe attitudes), which act as
constants and forcing functions in these nonlinear equations. The
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parameters must be adjusted such that this periodic solution satis-
fies the constraints that enable a desired flight condition. Thus the
solution is obtained in controls, attitudes and power required for
that flight condition. The accurate calculation of trim is crucial to
the determination of flight mechanics and handling qualities [1].
Furthermore, the aeroelastic stability of rotorcraft is strongly influ-
enced by trim settings and periodic trimmed solution [16]. Since
the blade equations are highly nonlinear, an accurate trimmed so-
lution is important to predict the response, vibratory loads and
airframe vibrations.

Hence to study the behavior of the aircraft (i.e. the helicopter)
as the controls are changed, we need to solve the system of non-
linear equations with unknowns (like controls and attitude angles)
for each set of the controls, input to the system. In this paper,
we look at different methods for solving the coupled nonlinear
equations, and propose an efficient and robust approach for the
solving the strongly coupled nonlinear equations involved in heli-
copter trim.

2. Formulation of the problem

The helicopter is represented by a nonlinear model of rotat-
ing elastic rotor blades dynamically coupled to a six-degree-of-
freedom rigid fuselage. Each blade undergoes flap bending, lag
bending, elastic twist and axial displacement. Governing equations
are derived using a generalized Hamilton’s principle applicable to
nonconservative systems [12]:

ψ2∫
ψ1

(δU − δT − δW )dψ = 0 (1)

Here, δU , δT and δW are virtual strain energy, kinetic energy
and virtual work respectively. δU and δT include energy contribu-
tions from components that are attached to the blade, e.g., pitch
link, lag damper, etc. These equations are based on the work of
Hodges and Dowell [12] and include second order geometric non-
linear terms accounting for moderate deflections in the flap bend-
ing, lag bending, axial and torsion equations. External aerodynamic
forces on the rotor blade contribute to the virtual work variational,
δW . The aerodynamic forces and moments are calculated using a
free wake inflow distribution and unsteady aerodynamics [13].

Finite element method is used to discretize the governing equa-
tions of motion, and allows for accurate representation of complex
hub kinematics and nonuniform blade properties [2]. After the fi-
nite element discretization, Hamilton’s principle is written as

ψ f∫
ψi

N∑
i=1

(δUi − δTi − δW i)dψ = 0 (2)

Each of the N beam finite elements has 15 degrees of free-
dom. These degrees of freedom correspond to cubic variations in
axial elastic and (flap and lag) bending deflections, and quadratic
variation in elastic torsion. Between the elements, there is continu-
ity of slope and displacement for flap and lag bending deflections
and continuity of displacements for elastic twist and axial deflec-
tions. This element ensures physically consistent linear variations
of bending moments and torsion moments and quadratic varia-
tions of axial force within the elements. The shape functions used
here are Hermite polynomials for lag and flap bending and La-
grange polynomials for axial and torsion deflection and are given
in Ref. [2].

Assembling the blade finite element equations and applying
boundary conditions results in Eq. (2) becoming

Mq̈(ψ) + Cq̇(ψ) + Kq(ψ) = F(q, q̇,ψ) (3)

The nodal displacements q are functions of time and all nonlin-
ear terms have been moved into the force vector in the right-hand
side. The spatial functionality has been removed by using finite el-
ement discretization and partial differential equations have been
converted to ordinary differential equations. The finite element
equations representing each rotor blade are transformed to nor-
mal mode space for efficient solution of blade response using the
modal expansion. Typically, 6–10 modes are used. The displace-
ments are expressed in terms of normal modes as

q = Φp (4)

Substituting Eq. (4) into Eq. (3) leads to normal mode equations
having the form

M̄p̈(ψ) + C̄ṗ(ψ) + K̄p(ψ) = F̄(p, ṗ,ψ) (5)

These equations are nonlinear ODEs but their dimensions are
much reduced compared to the full finite element equation (3).
The normal mode mass, stiffness, damping matrix and force vector
are given by

M̄ = ΦTMΦ, C̄ = ΦTCΦ, K̄ = ΦTMΦ, F̄ = ΦTF (6)

The mode shapes or eigenvectors in Eqs. (4) and (6) are ob-
tained from rotating frequencies of the blade [6]:

KsΦ = ω2MsΦ (7)

The blade normal mode equations in Eq. (5) can be written in
the following variational form [17]:

2π∫
0

δpT(M̄p̈ + C̄ṗ + K̄p − F̄)dψ = 0 (8)

Integrating Eq. (8) by parts, we obtain

2π∫
0

{
δp
δṗ

}T{ F̄ − C̄ṗ − K̄p
M̄ṗ

}
dψ =

{
δp
δṗ

}T{ M̄ṗ
0

}∣∣∣∣
2π

0
(9)

Since the helicopter rotor is a periodic system with a time pe-
riod of one revolution, we have ṗ(0) = ṗ(2π). Imposing periodic
boundary conditions on Eq. (9) results in the right-hand side be-
coming zero and yields the following system of first order ordinary
differential equations [17]:

2π∫
0

δyTQ dψ = 0 (10)

where

y =
{

p
ṗ

}
, Q =

{
F − Cṗ − Kp

Mṗ

}
(11)

The nonlinear, periodic, ordinary differential equations are then
solved for blade steady response using the finite element in time
in conjunction with Newton–Raphson method. Discretizing Eq. (6)
over Nt time elements around the rotor disk (where ψ1 = 0,
ψNt+1 = 2π ) and taking first order Taylor series expansion about
the steady state value y0 = [pT

0 ṗT
0]T yields the following algebraic

equations [17].

Nt∑
i=1

ψi+1∫
ψi

δyT
i Q i(y0 + �y)dψ

=
Nt∑

i=1

ψi+1∫
ψi

δyT
i

[
Q i(y0) + Kti(y0)�y

]
dψ = 0 (12)
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