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This paper focuses on the robust Kalman filtering problem for discrete-time nonlinear systems with
norm-bound parameter uncertainties. An explicit solution to the robust Kalman filtering problem is
presented based on a Riccati equation approach. A new Riccati equation is derived in the presence of both
the parameter uncertainties and the linearization errors. The proposed filter is illustrated by simulation
on a pulsar positioning system (PPS) in comparison with the standard extended Kalman filter (EKF) and
the robust H∞ filter (RHF). To facilitate the application of the robust filter, a heuristic method is proposed
to estimate the bounds of the model parameter uncertainties for the considered PPS.
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1. Introduction

The Kalman filter (KF) and the extended Kalman filter (EKF)
have important applications in many fields, such as signal pro-
cessing, data fusion and target tracking [31,13,29]. For the design
of the KF, accurate system model is required. In the presence of
model uncertainties, the performance of the standard KF may be
degraded. This has motivated many studies of robust filtering (see,
e.g., [26,22,10,7,12,21,8,20,27] and references therein).

The robust Kalman filtering (RKF) algorithms have been de-
signed for linear models with uncertainties [33,32,11,24,25]. The
performance objective of the RKF is to ensure a minimum possi-
ble upper bound on the estimation error covariance. Two popu-
lar approaches used to develop the RKF algorithms are the Ric-
cati equation approach [33,32,11] and the linear matrix inequality
(LMI) approach [24,25]. More research references on this topic can
be found in [2,17] for continuous-time systems and [15,23,6] for
discrete-time systems. These works are, however, restricted to the
case of linear systems. The RKF problem for nonlinear systems has
gained less attention. This situation motivates our present investi-
gation.

This paper proposes an RKF algorithm for discrete-time nonlin-
ear systems with norm-bound parameter uncertainties. A pseudo-
linearization technique is adopted to derive the Riccati equation,
such that the proposed algorithm will be simple and familiar to
the practicers. Both the parameter uncertainties and the lineariza-
tion errors are taken into consideration during the derivation. We
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refer to our algorithm as the robust extended Kalman filter (REKF)
as its structure resembles that of the EKF. In [16], an extended ro-
bust H∞ filter is proposed for continuous-time nonlinear systems
with uncertainties described by an integral quadratic constraint
(IQC). See also [14] and [9] for other related works. Different from
this kind of robust filters, no IQC or SQC (sum quadratic constraint)
is required for the proposed REKF. Another robust filter proposed
for nonlinear system is the robust EKF [5]. As the algorithm is de-
signed by using the H∞ technique, it is proper to call it as the
“extended H∞ filter”.

A problem of the RKF is still unsolved, which is the design of
the bounds of the uncertainties that appear in the Riccati equa-
tion (or LMI). In the above mentioned literature, there is a com-
mon assumption that the bounds of the uncertainties are known.
However, it may not be realistic in practice. Such an assumption
does not only limit the applicable domain of the relevant algo-
rithms, but also often results in conservative designs. In this paper,
a heuristic method is proposed to estimate the bounds of the un-
certain model parameters in the observation equation of the pulsar
positioning system (PPS).

The PPS is an autonomous celestial-based navigation system for
the spacecrafts. From 1999 through 2000, the U.S. Naval Research
Laboratory’s (NRL) unconventional stellar aspect (USA) experiment
onboard the Advanced Research and Global Observation Satellite
(ARGOS) was performed to demonstrate the feasibility of the X-
ray pulsar-based navigation [28]. It is reported in [19] that the
positioning accuracy of the PPS is on the order of 2 km. Due to
the limitation of current technology, the model parameters related
to the pulsar position information are not determined to high ac-
curacy. The parameter uncertainties may degrade the positioning
performance. In our prior works [30], the difference technique is
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investigated for satellite constellation to eliminate the common er-
ror terms caused by the parameter uncertainties. In this paper, the
robust filtering technique is adopted to suppress the unfavorable
effect of the parameter uncertainties.

This paper is organized as follows. In Section 2, the problem to
be solved is presented, and Section 3 derives the REKF. A brief de-
scription of the PPS and the method to estimate the bounds of the
uncertainties are given in Section 4. Comparisons with the EKF and
the robust H∞ filter (RHF) are made in Section 5. The conclusion
is drawn in Section 6.

Notation: Rn denotes the n-dimensional Euclidean space, Rn×m

is the set of n × m real matrices. E(.) denotes the mathematical
expectation. The superscript “T ” denotes the transpose. The in-
equality X � 0 means that the matrix X is symmetric and positive
semi-definite, and X � Y means X − Y � 0. Similar definitions ap-
ply to symmetric positive/negative definite matrices. δkj denotes
the Kronecker delta function. N (x, P ) denotes a normal distribu-
tion with mean x and covariance P . The matrix square root of
positive definite matrix P means a matrix A = √

P (or A = P 1/2)
such that P = A AT . In this paper, the inequalities with random
variables hold with probability one.

2. Problem statement

Consider the following uncertain nonlinear system

xk = f (xk−1) + Ak�Ak E Akxk−1 + wk (1)

yk = h(xk) + Ck�Ck ECkxk + vk (2)

where xk ∈ Rl is the state at time k, yk ∈ Rm is the measurement,
f (xk−1) and h(xk) are nonlinear system dynamic and observa-
tion models, respectively, which have bounded derivatives. wk ∈ Rl

and vk ∈ Rm are uncorrelated white noises with zero means and
known covariance matrices

E

{[
wk

vk

]
[ w T

j v T
j ]

}
=

[
Q kδkj 0

0 Rkδkj

]
. (3)

Ak�Ak E Akxk−1 and Ck�Ck ECkxk represent the parameter uncer-
tainties, where Ak and Ck are known scaling matrices of appropri-
ate dimensions. �Ak ∈ Rl×l and �Ck ∈ Rl×l are unknown matrices
satisfying

�Ak�
T
Ak � I , �Ck�

T
Ck � I . (4)

E Ak ∈ Rl×l and ECk ∈ Rl×l are known matrices which can be set as

E Ak = I , ECk = I . (5)

Let x̂k denote the estimate of xk . The objective of the paper
is to design a robust filter for the considered uncertain nonlinear
system. Specifically, given the measurement yi (0 � i � k), design
an estimator of the form

Prediction: x̂k|k−1 = f (x̂k−1) (6)

Update: x̂k = x̂k|k−1 + K k ỹk (7)

where ỹk = yk − h(x̂k|k−1) is the innovation, K k is filter gain to be
determined such that the covariance of the estimation error

x̃k = xk − x̂k (8)

is guaranteed to be smaller than a certain bound, i.e., for a given
matrix Σk , the estimation error satisfies

E
(
x̃k x̃T

k

)
� Σk. (9)

Furthermore, we will minimize the error bound Σk and obtain an
optimized filter eventually. Note that the structure of the standard
EKF [5] is adopted for the design of the REKF.

From (1) and (6), the dynamic equation of the prediction error

x̃k|k−1 = xk − x̂k|k−1 (10)

is described by

x̃k|k−1 = f (xk−1) − f (x̂k−1) + Ak�Ak E Akxk−1 + wk.

Instead of using the following classical approximation [10]:

x̃k|k−1 ≈ F k x̃k−1 + Ak�Ak E Akxk−1 + wk

where F k = ∂ f
∂x |x=x̂k−1

, we introduce an unknown time-varying

matrix �Bk ∈ Rl×l that satisfies

�Bk�
T
Bk � I (11)

and a known scaling matrix Bk ∈ Rl×l to model errors due to the
first order linearization technique, so that we obtain the following
exact equality:

x̃k|k−1 = (F k + Bk�Bk E Bk)x̃k−1 + Ak�Ak E Akxk−1 + wk. (12)

The unknown matrix E Bk ∈ Rl×l is set as

E Bk = (√(
x̃k−1x̃T

k−1

)−1 )T
(13)

to facilitate the following deductions. The uncertainty term �Bk ,
together with Bk and E Bk , take into account the linearization er-
rors in the model matrix F k , i.e.,

Bk�Bk E Bk x̃k−1 = f (xk−1) − f (x̂k−1) − F k x̃k−1. (14)

For physical processes with finite energy, as the state xk is
bounded, and the magnitude of the estimate x̂k can be controlled,
it is reasonable to assume that the prediction error is scaled by the
matrix Bk . Similar formulations for the linearization errors have
been used for the design of the nonlinear robust filter (see, e.g.
[4]) and the stability analysis of the EKF (see, e.g. [3]). Generally, if
Bk is set to be large enough, there exists appropriate matrix �Bk
such that (11) is satisfied.

Similarly, we obtain the exact formulation of the innovation

ỹk = (Hk + Dk�Dk E Dk)x̃k|k−1 + Ck�Ck ECkxk + vk (15)

where Hk = ∂h
∂x |x=x̂k|k−1

, the unknown time-varying matrix �Dk ∈
Rl×l that satisfying

�Dk�
T
Dk � I (16)

together with the known scaling matrix Dk ∈ Rm×l and the un-
known matrix E Dk ∈ Rl×l that satisfying

E Dk = (√(
x̃k|k−1x̃T

k|k−1

)−1)T
(17)

take into account the linearization errors.
Combining (7), (8), (10) and (15) yields the dynamic equation

of the estimation error

x̃k = (I − K k Hk − K k Dk�Dk E Dk)x̃k|k−1

− K kCk�Ck ECkxk − K k vk. (18)

For later use, the covariance matrices of the prediction error x̃k|k−1
and the estimation error x̃k are defined as

P k|k−1 = E
(
x̃k|k−1x̃T

k|k−1

)
, P k = E

(
x̃k x̃T

k

)
. (19)

The problem stated here differs from those considered in the liter-
ature (e.g., [32,11,24,25,6]) in that both the parameter uncertain-
ties described by Ak�Ak E Akxk−1 and Ck�Ck ECkxk , and the lin-
earization errors described by Bk�Bk E Bk x̃k−1 and Dk�Dk E Dk x̃k|k−1
are taken into consideration.
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