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A novel engine health management (EHM) scheme is introduced. It uses flight-level, instead of
thermodynamic, data to cost-effectively augment the onboard EHM redundancy. For a nominal healthy
aircraft, fault-sensitive interrelations among flight data are globally modelled inside a flight regime via
Constant-Coefficient Pooled Nonlinear AutoRegressive with eXogenous (CCP-NARX) excitation represen-
tations. Single or sequential engine faults perturb these interrelations. Statistically evaluating the
perturbation-induced effects draws reliable conclusions on the engine’s health. Validation and compari-
sons with Kalman filter-based alternatives are made throughout the regime under various operational
conditions.

© 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

In modern aircraft, and even more so in future pilot-less ver-
sions, high reliability and safety should be cost-effectively ob-
tained. The multiplication of existing critical hardware (the “hard-
ware redundancy” principle), coupled to voting schemes for health
management (HM) purposes, has its limits due to added weight
and cost [26]. Significant improvements on reliability/safety may,
hence, only result from additional analytical redundancy based on
the smart use of available system-level signals and hardware [18].

Introducing engine HM (EHM) analytical redundancy by mod-
elling part of the healthy engine dynamics using physics-based
principles, and then detecting fault-induced trends in model pa-
rameters (or specific functions of them) is commonly used in
either on-board [6] or on-the-service-bay [34] versions. Other
schemes use the gas path analysis (GPA) approach to identify
highly accurate models on typical health-state-related data along
the gas path (afterfan total temperature and pressure, high pres-
sure compressor temperature and pressure, and so on): In [25] lin-
ear stochastic models (AutoRegressive with eXogenous excitation –
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ARX, Output Error – OE or Prediction Error – PE) are augmented
with “model-error” models, designed following the H∞ principle
and aiming at minimizing modelling uncertainties around an en-
velope location. In [27] the model augmentation uses a neural
network-based part. In both schemes fault-induced trends between
the model output and that of the actual engine provides HM re-
sults.

A majority of approaches rely, however, on models of the
healthy engine dynamics identified via GPA measurements and
coupled to fuzzy logic rules [19], or Kalman filters (KF) in stan-
dard or adaptive form [24] for estimating fault-induced changes
on health parameters. An interesting comprehensive study [30]
compares schemes using KFs in linear (LKF), extended (EKF) and
unscented (UKF) versions. Both EKF- and UKF-based schemes show
superior performance at the price of (one and two, respectively,
orders of magnitude) higher online computational effort than the
LKF. This is due to necessary onboard transformations (which po-
tentially involve badly-conditioned matrices).

Other EHM schemes rely on multiple engine models or ob-
servers to describe the engine dynamics in various health states,
and compare the output of each model to that of the engine. Then,
the “correct” model and the associated health state are deduced
based on the model output being close to that currently measured
from the engine. Multiple health-state-related models are built us-
ing either KFs [21,23], Takagi–Sugeno fuzzy rules [12], or neural
networks [11,28]. Multiple health-state-related observers (designed
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Fig. 1. The engine health management scheme and detail of the aircraft simulator with the engine subsystem.

for enhanced robustness) are reported in [10,29], or, in nonlinear
versions in [35].

Finally, non-model based schemes use thresholds on engine
health state parameters [32], pattern recognition techniques [3], or
even fuzzy inference [2] on groups of engine parameters to detect
fault-induced trends. These works are comprehensively reviewed
in [33].

The proposed onboard EHM scheme innovates by operating on
flight-level, rather than engine thermodynamic, data. Since avail-
able data are used, the expensive/complex development of new
physical sensors or hardware is avoided. The resulting (unrelated
to GPA) EHM redundancy is intended to complement the existing
GPA-related one, in order to enhance the available decision-making
capabilities. The approach extends the generic ideas of relevant
work in [13], and relies on stochastic nonlinear modelling of the
interrelations among flight data such as acceleration, thrust and
so on. Hence, the use of (often unavailable) physics-based or em-
pirical models, as in [6], is no longer needed. These interrelations
are fault-sensitive, that is, valid exclusively for a nominal healthy
aircraft, and are modelled via Constant-Coefficient Pooled Nonlin-
ear AutoRegressive with eXogenous (CCP-NARX) excitation repre-
sentations. Potential single or sequentially occurring engine faults
perturb these nominal (CCP-NARX modelled) interrelations. Then,
custom-built statistical hypothesis tests evaluate the perturbation-
induced effects in order to detect abnormal engine operation, and
(when possible) isolate causes of engine malfunctions. Hence, ad-
ditional ability to judge the GPA-based internal engine diagnosis is
provided.

The paper is organized as follows: Section 2 presents the air-
craft (a nonlinear simulator) and the considered engine faults. Sec-
tion 3 describes the CCP-NARX modelling procedure and the design
of the statistical tests. Section 4 shows some modelling and HM
results, along with brief comparisons with LKF-based schemes. Fi-
nally, Section 5 presents some concluding remarks.

2. The aircraft and the faults

A simulator of an autonomous twin-engined small passenger
aircraft is used in this study. It is a 6 degree-of-freedom nonlinear
aircraft model, with the inputs (stick, wheel, pedal, throttle) pro-
vided from a specifically designed autopilot block according to a
predetermined flight trajectory (Fig. 1). The input and the result-
ing attitude signals (including the angle-of-attack α, the sideslip
angle β , surface moments, accelerations and angular rates) are
available. The wind and turbulence effects (conforming to MIL-
F-8785C) are considered as system disturbances. The considered
faults affect the left engine, and are simulated by acting on se-
lected signals fed into the engine subsystem, as shown in Fig. 1.

Table 1
The faults considered.

Type Description Magnitude

F A
k Part of throttle input (k% of total)

fed to engine
k = 25

F B
k Unstable thrust & flameout k = 550

F C
k Recurrent engine thrust reduction

(k% of nominal)
k = 30

F D
k1,k2,t F A

k1
fault shortly followed (in t s)

by F B
k2

fault

k1 = 25, k2 = 550,
t = 10, 20 s

The HM scheme monitors the engine operational level, rather than
any internal components (fans, compressors and so on) as in GPA-
based schemes. Thus, a relatively simple engine model is consid-
ered, since no GPA signals (other than the total thrust) have to be
used. The simulated faults involve:

a) Partial reduction of the throttle input signal fed into the left
engine control module, with the measurements of altitude and
Mach signals (designated as Alt[t] and Mach[t], respectively)
being unaffected. The engine operation is substantially altered,
as if the link from throttle to engine suffered a severe, but not
fatal, failure (see Fig. 2(a) from instant 150 s onwards). This
fault is referred to as F A

k with A indicating the fault type and
k its considered magnitude (k% of the throttle input normally
entering the engine control module, see Table 1).

b) Unstable left engine thrust output simulating inconsistent
compressor airflow before flameout (see Fig. 2(b)), that is, en-
gine shutdown. This situation may be due to severe successive
internal incidents (such as blade loss) causing fast deteriora-
tion. This fault is referred to as F B

k with B indicating the fault
type, and k its magnitude, corresponding to the colored noise’s
standard deviation σ = k added to the thrust output to simu-
late the fault.

c) Recurrent left engine thrust reduction (see Fig. 2(c)). The left
engine thrust repeatedly drops to lower values for short time
intervals, possibly due to unstable compressor airflow. This sit-
uation may be due to either physical damage, or control soft-
ware issues. The fault is referred to as F C

k , with C indicating
the fault type and k the % periodic reduction of the current
left engine thrust nominal value.

d) Multiple sequentially occurring faults affecting the left engine.
The occurrence of F A

k faults is followed some seconds later
by F B

k faults affecting the already “faulty” engine. Clearly, this
sequential occurrence is not equivalent to superposing the ef-
fects of single F A

k and single F B
k faults, meaning that a sep-

arate F D
k1,k2,t class is necessary. These sequential faults are

referred to as F D
k1,k2,t , with D indicating the fault type and
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