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Flying capability opens novel opportunities in robotic applications, such as search and rescue, surveillance
navigations and mapping operations. In this article, considering an aerial robot, i.e. an unmanned aerial
vehicle (UAV), a few comparable controllers are designed to manage the system performance during
various maneuvers. After introducing a nonlinear dynamics model of the system, an adaptive controller
is proposed based on feedback linearization approach and using Lyapunov design method. Next, an
optimal controller is designed to compare its performance with the designed adaptive controller. Stability
analysis for the designed adaptation law is also studied and discussed. To evaluate the performance of
designed controllers for a given aerial robot, a comprehensive simulation program is developed. It is
shown that tracking errors for the state variables exponentially converge to zero, even in the presence
of parameters uncertainty. In particular, it is shown that the proposed adaptive controller, based on
its feedback linearization approach and Lyapunov stabilized characteristics, is able to perform perfect
path tracking maneuvers, compared to the optimal controller that contains minor errors due to its feed-
forward nature.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

To improve on-orbit servicing capabilities, space free-flying
robots (SFFR) in which one or more manipulators are mounted on
a thruster-equipped base, have been proposed [2]. It is expected
that robotic systems play an important role in future space applica-
tions, including servicing, construction, and maintenance of space
structures on orbit. Therefore, dynamics modeling and motion con-
trol of SFFR have been extensively studied [21,3,13,12,11]. Flying
capability opens new opportunities in terrestrial applications as
well, in performing field services and tasks like search and rescue,
observation and mapping operations [6,14,10]. An aerial robot or
unmanned aerial vehicle (UAV) may be defined as an aerial vehi-
cle (mostly without on-board manipulators) that uses aerodynamic
forces to support its flight in a desired manner, so that a modern
UAV is a fully autonomous flying system. Recent technological ad-
vancements in navigation and guidance systems, airframe types,
payload varieties, and propulsion systems promise more complex
goals to be achievable and yet remain cost-effective. The interac-
tion of the air flows generated by propeller contribute to complex
aerodynamic forces that affects the vehicle’s motion, and in turn
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makes the motion control of a UAV a challenging task. The system
dynamics is not only coupled and nonlinear, but also difficult to
be characterized due to the complexity of the system aerodynamic
properties [22].

Despite an ordinary controller, an adaptive controller exploits
a mechanism for online adjustment of the controller parameters
based on measured variables. There are two main approaches for
constructing adaptive controllers. One is the so-called model ref-
erence adaptive control method, and the other is the so-called
self-tuning method. Various nonlinear control methods, fuzzy, and
adaptive laws have been applied to UAVs in case of specific longi-
tudinal and lateral maneuvers [4,17,8,7]. Besides using linear con-
trollers for UAVs [15,23], adaptive controllers with a single hidden
layer adaptive element have been successfully used on a number
of aircraft [19,18,16].

In this article, various nonlinear adaptive and optimal con-
trollers are proposed for an aerial robot. First, nonlinear dynamics
model of longitudinal motion is extracted, which will be used to
develop the controller. Stability condition for the designed adap-
tation law is investigated using Lyapunov method to guarantee
the stability of controller. Then, based on feed-forward approach,
an optimal controller is designed to compare the performance of
these controllers, in terms of system input rate and the state vari-
ables errors. To evaluate performance of the designed controllers, a
comprehensive simulation program has been prepared. Exploiting
this simulation routine, the system is simulated under the pro-
posed control laws, and comparison between state variables errors
and trajectory tracking characteristics will be discussed.
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Nomenclature

δe Elevator angle
δT Thrust input
γi Positive constant
λi Positive constant
θ Pitch angel
� Adaptive gain matrix
� Filter matrix
Cd Transformation matrix
g Gravity acceleration
k Control law constant
p Roll rate
q Pitch rate
r Yaw rate

u Velocity in x direction of body
u0 Velocity along x direction of body coordinates
v Velocity in y direction of body
w Velocity in z direction of body
m Main body mass
P Parameter
x State variable
X Force in x direction
Y Force in y direction
Z Force in z direction
Xu = ∂ X/∂u Stability derivatives that defined for each X pa-

rameter relative to u

2. Dynamics modeling

Considering the base of aerial robot as a rigid body, its equa-
tions of motion are supposed to be ODEs with constant coeffi-
cients. Coefficients in these ODEs are representations of aerody-
namic stability derivatives of mass and inertia properties of the
plane. These equations could be stated as first order ODEs. For
instance, using equation of motion for a rigid body and consider-
ing Euler angles and gravity and lifting forces, dynamics equation
along longitudinal axis of the plane can be written as:

X − mg Sin(θ) = m(u̇ + qw − rv) (1)

Each variable in this equation is substituted with its initial value
added with a perturbed value as:

u = u1 + �u, v = v1 + �v, w = w1 + �w

X = X1 + �X, q = q1 + �q, r = r1 + �r (2)

So, it is obtained:

X1 + �X − mg Sin(θ1 + �θ)

= m

(
d

dt
(u1 + �u) + (q1 + �q).(w1 + �w)

− (r1 + �r).(v1 + �v)

)
(3)

The force �X indicates a change in thrust and aerodynamic
forces along x direction, which can be presented as a Taylor se-
ries in terms of perturbed variables. Assuming �X as a function of
u, w , δe , δT parameters then �X can be written as:

�X = ∂ X

∂u
�u + ∂ X

∂ w
�w + ∂ X

∂δe
�δe + ∂ X

∂δT
�δT (4)

where ∂ X/∂u, ∂ X/∂ w , ∂ X/∂δe , ∂ X/∂δT are known as stability
derivatives and their values are defined in the reference flight con-
dition. The variables δe and δT define the elevator angle and the
fuel gate attitude. Eq. (1) for the initial flight condition is written
as:

X1 − mg Sin(θ1) = m(u̇1 + q1 w1 − r1 v1) (5)

Assuming symmetric flight conditions yields:

v1, w1,q1, r1 ≈ 0 (6)

By subtracting Eq. (3) from previous equation and substituting
�X while reformatting the result, the nonlinear equation of rigid
body motion along x direction is obtained as:

(
d

dt
− Xu

)
�u − Xw�w + g.Sθ + �q.�w − �r.�v

= Xδe �δe + XδT �δT (7)

where Xw = ∂ X/∂ w/m and Xu = ∂ X/∂u/m. For the two remained
equations of longitudinal motion a similar approach is performed
and the following equations will be obtained:

−Zu�u +
(

(1 − Z ẇ)
d

dt
− Z w

)
�w

−
(

(u0 + Zq)
d

dt
− g sin θ0

)
�θ

+ �p.�v − �q.�u = Zδe �δe + ZδT �δT (8)

−Mu�u −
(

Mẇ
d

dt
+ Mw

)
�w

+
(

d2

dt2
− Mq

d

dt

)
�θ +

(
Ix − Iz

I y

)
�r.�p

+
(

Ixz

I y

)
�p2 −

(
Ixz

I y

)
�r2 = Mδe �δe + MδT �δT (9)

These nonlinear equations are used to design the controller. Thus,
according to two inputs of the system, feedback linearization con-
troller will be designed:

�u̇ = Xu .�u + Xw .�w − g.�θ − �q.�w

+ Xδe .�δe + XδT .�δT (10)

�ẇ = Zu .�u + Z w .�w + u0.�q + �q.�u + Zδe .�δe

+ ZδT .�δT (11)

3. Nonlinear controller design

Various approaches have been proposed for nonlinear controller
design, which include feedback linearization, robust control, adap-
tive control and gain scheduling, and each of these are most suit-
able for a specific kind of control problem. Feedback linearization
has attracted a great deal of research interests in recent years. The
idea of simplifying the form of a system’s dynamics by choosing a
different state representation is not entirely unfamiliar. In mechan-
ics, for instance, it is well known that the form and complexity of
a system model depends considerably on the choice of reference
frames or coordinate systems. Feedback linearization techniques
can be viewed as way of transforming original system models into
equivalent models of a simpler form. Thus, they can also be used
in the development of robust or adaptive nonlinear controllers.
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