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In this paper, a third order shear deformation theory is used to study the behavior of laminated smart
composite plate with magnetostrictive layers, while accounting for geometric nonlinearity in the von-
Karman sense. A coupled analysis of magnetostrictive material is presented where Terfenol-D is used as
a magnetostrictive material to control the responses of the laminated smart composite plates. A C0 finite
element formulation is proposed for this purpose. The accuracy of the present formulation has been
shown by comparison of the present results with those available in the literature. Some new results are
also presented for future research in this field of study.
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1. Introduction

Smart materials have the ability to respond to changes in stress,
strain, displacement, velocity, acceleration, electrical, thermal or
other mechanical change of a structure through changes in their
properties in a controlled manner to maintain a desirable and
satisfactory performance. So, smart materials are quite popular
materials to be used as both sensors and actuators in biomedi-
cal, aerospace structures, automotive and machine tool industries,
flight control, etc. [5,13,21,8]. The most common smart materials
are piezoelectric and electrostrictive materials, shape memory al-
loys, magnetostrictive materials, electro and magneto rheological
fluids, etc. When these smart materials are bonded or embedded
in conventional structures made of isotropic or composite materi-
als to enhance its performance and capabilities then the structures
are known to be smart structures having the capability of sensing,
actuating and processing or controlling.

A magnetostrictive material is one of the above mentioned
smart materials which undergo dimensional change when exposed
to a magnetic field and are capable of changing their magnetic
state in response to stresses [25]. This property was first observed
by James P. Joule in 1842 [14] when he noted that a sample of
iron changes in length when magnetized by a magnetic field. These
properties of magnetostrictive materials are used effectively to cre-
ate actuators and sensors that deliver improved performance over
other smart materials. One of the most popular and commercially
available magnetostrictive materials is Terfenol-D, which produces
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relatively low strains and moderate forces over a wide frequency
range [6,7]. For its applications in smart laminated structures it is
very important to know the interaction between its constituents
layers i.e., the magnetostrictive layers and the laminated compos-
ites. In this aspect, there exist a number of investigations [10,
12,20] which studied the material properties of magnetostrictive
material Terfenol-D with regard to its static and dynamic applica-
tions. Anjanaappa and Bi [2,3] investigated the feasibility of using
embedded magnetostrictive mini actuators for smart structural ap-
plications. Beside, the mechanical behavior of smart structures em-
bedded with magnetostrictive layers is influenced by the coupling
between magnetic and mechanical effects [4] and moreover, it is
necessary to consider geometric and material nonlinearities.

It is well-known fact that the effect of shear deformation is very
much important in laminated composite plate due to their very
low transverse shear modulus compared to the in-plane modulus
and thus, it is very important to consider this effect in the anal-
ysis of laminated composites. In order to take this into account a
number of plate theories are derived [27]. Among them the com-
monly used theories are the classical laminated plate theory (CLPT)
[31,30] and the first order shear deformation theory (FSDT) [32,
33] and higher order shear deformation theories (HSDT) [26,16,23].
All these theories provide approximate solutions for a problem.
There exist some three-dimensional (3D) elasticity solutions [22,
29] which provide the most accurate solutions for particular types
of problems but the availability of these are scanty. Therefore,
the use of various plate theories is quite usual practice. Kant and
Swaminathan [17] presented analytical formulation of the static
analysis of simply supported composite and sandwich plates us-
ing various displacement models based on higher order refined
shear deformation theory. Using third order shear deformation the-

1270-9638/$ – see front matter © 2011 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ast.2011.01.003

http://dx.doi.org/10.1016/j.ast.2011.01.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
mailto:bnsingh@aero.iitkgp.ernet.in
http://dx.doi.org/10.1016/j.ast.2011.01.003


M.D.V. Hari Kishore et al. / Aerospace Science and Technology 15 (2011) 224–235 225

ory (TSDT), Aagaah et al. [1] studied deformations of a laminated
composite plate subjected to mechanical loads and derived lin-
ear dynamic equations for a rectangular multi-layered composite
plate. Pradhan et al. [24] presented an analytical solution of vi-
bration control for simply supported laminated plates using first
order shear deformation theory. Using a unified plate theory Lee
et al. [19] studied control of transient response of laminated com-
posite plates with integrated smart layers (Terfenol-D) used as
sensors and actuators. The assumed theory includes the features
of classical, first order and third order plate theories. Ghosh and
Gopalakrishnan [9] presented a finite element formulation for lin-
ear coupled analysis of composite laminate with embedded mag-
netostrictive layer acting as both sensor and actuator and they
showed the ply sequence to have prominent effects on the over-
all response due to coupling. The above mentioned studies do not
consider either geometric or material nonlinearities in the analysis
of laminated structures. In this direction, Huai and Hui [11] derived
a simple higher order theory for nonlinear bending of generally
laminated composite rectangular plates. Kant and Kommineni [15]
presented a refined higher order shear deformation theory for the
linear and geometrically nonlinear finite element analysis of fiber
reinforced composite and sandwich laminates. Lee and Reddy [18]
studied deflection control of the laminated composite plate using
third order shear deformation theory. The effect of geometric non-
linearity was taken in the von-Karman sense to study its influence
on the static and dynamic response of the laminate using finite
element method. Terfenol-D was taken as embedded magnetostric-
tive layers in the plate to control the plate response.

It is evident from the above discussion that the studies on the
nonlinear static analysis of the smart composite plate embedded
with magnetostrictive materials are limited. So, in the present pa-
per it is attempted to study the nonlinear static behavior of the
composite plates embedded with magnetostrictive materials based
on the third order shear deformation theory taking into account
the geometric nonlinearity in von-Karman sense. Four different
displacement fields have been assumed to bring out the effects
of shear deformation. For this purpose a C0 finite element for-
mulation is developed and applied for the static analysis of lam-
inated composite plates and the same has also been applied to
smart composite plate embedded with magnetostrictive layers. In
fact, the present study simply extends the work of Lee and Reddy
[18] incorporating the coupled analysis of the composite laminate
with embedded magnetostrictive layers acting as both sensors and
actuators. Numerical results for four assumed displacement fields
are presented to compare the deflection response for various pa-
rameters like different lamination schemes, loading conditions, and
boundary conditions.

2. Mathematical formulation

2.1. Displacement models

In the present study, the displacement field within the laminate
is assumed to be based on third order shear deformation theory. In
this, the in-plane displacements are expanded as cubic functions of
the thickness coordinate while the transverse displacement is as-
sumed to vary in two different ways along the thickness direction
and accordingly two different displacement models are obtained.
In one model transverse displacement varies linearly through the
plate thickness (Model 1.1) [17] and in the other model it is in-
dependent of the plate thickness (Model 2.1) [11]. In addition to
the above assumed displacement models, if traction free bound-
ary conditions are applied on top and bottom surfaces of the
plate, above-mentioned displacement models as defined (Model 1.1
and Model 2.1) are modified, i.e., Model 1.2 [15] obtained from

Model 1.1 and Model 2.2 [1] obtained from Model 2.1. The assumed
displacement models are:

Model 1.1:

u(x, y, z) = u0(x, y) + zφx(x, y) + z2θx(x, y) + z3λx(x, y),

v(x, y, z) = v0(x, y) + zφy(x, y) + z2θy(x, y) + z3λy(x, y),

w(x, y, z) = w0(x, y) + zw1(x, y), (1)
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Model 1.2:

u(x, y, z) = u0(x, y) + zφx(x, y) + C1z2θ2x(x, y)
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Model 2.1:

u(x, y, z) = u0(x, y) + zφx(x, y) + z2θx(x, y) + z3λx(x, y),

v(x, y, z) = v0(x, y) + zφy(x, y) + z2θy(x, y) + z3λy(x, y),

w(x, y, z) = w0(x, y), (3)

with

(u0, v0, w0) = (u, v, w)z=0,
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Model 2.2:

u(x, y, z) = u0(x, y) + zφx(x, y) − z3C1
[
φx(x, y) + θx(x, y)

]
,

v(x, y, z) = v0(x, y) + zφy(x, y) − z3C1
[
φy(x, y) + θy(x, y)

]
,

w(x, y, z) = w0(x, y), (4)
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