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In this article the maximum range cruise is analyzed. Wind effects are included in the analysis, taking
into account the variation of wind speed with altitude (crosswinds are ignored). The optimal control
laws that lead to maximum range are analyzed (unconstrained case); constrained regimes (constant-
altitude cruise or constant-Mach cruise) are also analyzed. The maximum range in the optimal regimes
(unconstrained and constrained) is studied. The formulation is made for a general aircraft performance
model (general drag polar and general specific fuel consumption model), and is particularized for simpler
models in order to establish the precise range of validity of some published results. The effects of wind
on the optimal control laws and on the maximum range are studied. The accuracy of the incompressible
approximation is also studied. Results are presented for a model of a typical twin-engine, wide-body,
transport aircraft.
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1. Introduction

The analysis of optimal cruise performance is important in
long-range high-subsonic transport aircraft (see, for instance,
Torenbeek’s work [17,18]). When one considers Maximum Range
Cruise (MRC), the problem is to maximize range for a given cruise
fuel load. The MRC problem has been addressed by Miller [12] and
Torenbeek [18], but in their analysis wind effects are ignored. In
this paper a general analysis of this problem is presented, includ-
ing wind effects. In this analysis the optimal control laws (that
is, optimal altitude and speed laws) that maximize range are an-
alyzed. Constrained regimes (constant-Mach or constant-altitude
flights) are also considered; the corresponding optimal control law
(optimal altitude or optimal speed law, respectively) is analyzed.
The maximum range in the optimal regimes (unconstrained and
constrained) is studied.

The classical problem of constant-altitude and constant-Mach
cruise (studied thoroughly by Miele [11], Vinh [19], and more re-
cently by Cavcar and Cavcar [3] and Cavcar [4], among others) is
not considered in this paper; cyclic cruise, studied by Speyer [16]
and Sachs and Christodoulou [15] among others, is not considered
either.

In the previous references different aircraft performance mod-
els (APM) are considered. The most general case is that used by
Torenbeek, namely, general drag polar and general specific fuel
consumption model; this model is used in this paper.
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Wind effects are considered by Hale and Steiger [5,6] and As-
selin [1], but only for constant winds and using an oversimplified
APM, namely, parabolic drag polar of constant coefficients and con-
stant specific fuel consumption (model that is not appropriate for
high-subsonic transport aircraft). Roskam and Lan [14] define a
procedure to take into account wind effects in the calculation of
range. The analysis of wind effects presented in this paper is made
for a general APM (general drag polar and specific fuel consump-
tion model) and takes into account the variation of wind speed
with altitude. The only restriction is that crosswinds are ignored.
The effects of wind on the optimal control laws and on the maxi-
mum range are studied.

The general formulation developed in this paper is also par-
ticularized for simpler APMs, and for constant winds. As a con-
sequence of this analysis, some results obtained in the literature
under some conditions are shown to be valid in more general
cases; hence, the precise range of validity of some known results is
established. The case of an incompressible drag polar is also con-
sidered; the accuracy of this approximation is studied.

Results are presented for an APM that models a typical twin-
engine, wide-body, transport aircraft, including the optimal control
laws, the maximum range, and the wind effects on both.

2. Formulation

2.1. Equations of motion

In civil air transport the cruise flight is quasi steady, thus in
the analysis of aircraft cruise regimes the following equations are
commonly used (see Miele [11]):
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T = D

L = W
dr

dt
= V g

1

g

dW

dt
= −cT (1)

The first two equations establish the equilibrium of forces, between
thrust (T ) and aerodynamic drag (D), and between lift (L) and
aircraft weight (W ); the 3rd equation is the kinematic equation,
where r is the distance flown by the aircraft and V g is the aircraft
ground speed, which can be expressed as

−→
V g = −→

V + −→w , where
−→
V

is the aerodynamic velocity and −→w is the wind velocity (relative
to the ground); and the 4th equation is the mass equation, where
c is the specific fuel consumption (defined as mass of fuel con-
sumed per unit thrust and unit time). Time (t) is the independent
variable.

For the atmosphere, the ISA (International Standard Atmo-
sphere) model is considered, which defines the density (ρ), pres-
sure (p) and temperature (Θ) as functions of altitude (h); in par-
ticular, at sea level, ρ0 = 1.225 kg/m3, p0 = 101.326 kN/m2 and
Θ0 = 288.15 K. Also, a constant-gravity model is adopted, defined
by g = 9.80665 m/s2.

The winds considered in this paper have the following prop-
erties: they are contained in the plane of flight (this means that
crosswinds are not considered), have the same direction as

−→
V , and

can vary with altitude. Hence, one can write

V g = V + w(δ) (2)

where δ = p
p0

is the pressure ratio (which is a function of altitude).
Thus, positive values of w correspond to tailwinds and negative
values to headwinds.

2.2. Aerodynamic and propulsion models

The aerodynamic model provides the drag polar

C D = C D(M, CL) (3)

that gives the drag coefficient as a function of Mach number, M ,
and lift coefficient, CL . This is the general drag polar commonly
used for this type of problems, see for instance Refs. [11,18].

In terms of the lift and drag coefficients, the lift and aerody-
namic drag can be written as

L = q0δM2CL

D = q0δM2C D(M, CL) (4)

where q0 = 1
2 γ p0 S , γ = 1.4 (ratio of specific heats) and S is the

reference wing area. Using the 2nd equation of motion (1) one has
for the lift coefficient the following expression

CL = W

q0δM2
(5)

The propulsion model provides the specific fuel consumption.
The following general model is considered

c = a0
√

θ

LH
CC (M, CT ) (6)

where a0 is the speed of sound at sea level, θ = Θ
Θ0

is the tem-
perature ratio, LH is the fuel latent heat, and CC is the specific
fuel consumption coefficient, which in general is a function of the
Mach number and the thrust coefficient, CT , defined as CT = T

WTOδ
,

where WTO is the reference take-off weight. Using the 1st equation
of motion (1) and the definition of C D (Eq. (4)) one has

CT = q0

WTO
M2C D(M, CL) (7)

In the applications found in the literature, the dependence of
CC with CT is neglected, since in practice is very week [11]. On
the contrary, the dependence of CC with M is important for high
bypass ratio turbofans [18], and must be taken into account. The
fuel consumption associated to running all auxiliary equipment is
not considered in the model.

In this paper, the general formulation is made for the gen-
eral drag polar (Eq. (3)) and the general specific fuel consumption
model (Eq. (6)). In the applications, results are presented for the
parabolic drag polar of Cavcar and Cavcar [3] (with linear term
and Mach-dependent coefficients) and the specific fuel consump-
tion model proposed by Mattingly [10] and approximately depicted
by Miele [11] (with the dependence of CC with CT neglected, and
a linear model for CC (M)). These models are described in more
detail in Appendix A.

2.3. Range

The flight range is obtained integrating the kinematic equa-
tion (1), and can be transformed into a weight integration using
the mass equation (1)

R =
t f∫

ti

V g dt = − 1

g

W f∫
W i

V g

cT
dW = 1

g

W i∫
W f

a0
√

θ M + w

cD
dW (8)

where W i and W f are the initial and final aircraft weights (the
difference W F = W i − W f is the cruise fuel), and where Eq. (2),
the definition of Mach number and the 2nd equation of motion (1)
have been taken into account.

From Eqs. (4) and (5) one has that the functional dependence
for the aerodynamic drag is D = D(M, δ, W ), hence, the integrand
is a function of M , δ, and W , so that one can write

R =
W i∫

W f

S R(M, δ, W )dW (9)

where the specific range S R is given by

S R = a0
√

θ M + w

gcD
(10)

Once the control laws M(W ) and δ(W ) are set, the range R can
be calculated. These control laws represent the variation of Mach
number and altitude with aircraft weight along the cruise flight.

3. Optimal control laws

The objective of the Maximum Range Cruise (MRC) is to max-
imize the flight range for a given cruise fuel load. In this section
the optimal control laws that lead to range maximization are ob-
tained. Since maximum range is obtained by maximizing at each
weight the specific range (see Miele [11]), the optimal control laws
follow from the partial derivatives of S R (Eq. (10)) with respect to
the control parameters M and δ, namely,

∂ S R

∂M
= 0

∂ S R

∂δ
= 0 (11)

Hence, one obtains the following two optimal equations
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