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Variable phase control of wing rock
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Abstract

This paper addresses a variable phase control issue for suppressing wing rock with hysteresis. In free-to-roll tests, as the angle of attack
(AOA) is increased, the roll angle versus the rolling moment indicates hysteresis and provides clues about where wing rock motion is being
driven and where the motion is being damped. We present the analysis method of wing rock energy to explain the mechanism of wing rock
and the formation of hysteresis, and then develop a variable phase control (VPC) scheme to compensate the phase and magnitude distortions.
The effectiveness and robustness of the proposed scheme are demonstrated by suppressing wing rock phenomenon at various AOA and any
initial conditions.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Many modern combat aircraft often operate at subsonic
speeds and high angles of attack. At a sufficiently high angle
of attack (AOA), these aircraft become unstable and enter
into a limit-cycle oscillation (LCO), mainly rolling motion
known as wing rock [3,5,7,13]. In practice, high-speed civil
transport and combat aircraft can fly in conditions where this
self-induced oscillatory rolling motion is observed; more-
over, wing rock phenomenon can be highly annoying to the
pilot and may pose serious limitations to the combat effec-
tiveness of the aircraft. Therefore, the control of wing rock
phenomenon is of significant importance.

Considerable research has been conducted on the motion
of 80◦ swept delta wing to help understand the fundamental
mechanisms causing wing rock [1,3–5,7–9,12]. Free-to-roll
tests are usually used to determine build-up and limit-cycle
characteristics of wing rock. These results reveal the magni-
tude of limit cycles of wing rock varying with the AOA. In
addition, the tracking tests [1,3,4,8,9,12] of the primary vor-
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tex positions in the cross-flow plane provide the data to un-
derstand the driving mechanism of wing rock phenomenon.
That hysteresis exists between the roll angle and the rolling
moment provides clues for explaining wing rock phenom-
enon. This hysteresis shows three loops during one cycle.
The researchers [1,3,7,9] have observed that the work done
by the rolling motion is driving the oscillation during the
central loop since the aerodynamic motion acts in the direc-
tion of wing rolling motion whereas during the two reverse
outer loops the oscillation is being damped. In this paper, we
will theoretically analyze this hysteresis mechanism instead
of physical insight.

In this work, inspired by the hysteresis mechanism of
driving wing-rock motion, we will directly apply hysteresis
compensation or reduction methods to suppress wing rock.
The conception of the phaser proposed by Cruz and Hernan-
dez [2] is adopted to design variable phase control (VPC)
schemes.

The main objective of this paper is to study the VPC
to suppress wing rock with hysteresis. The rate of energy
change of wing rock is derived to analyze the hysteresis
mechanism of driving wing rock. The hysteresis loops, based
on a defined critical angle, are divided into two parts: a cen-
ter loop and two reverse outer loops. We develop a VPC
scheme to compensate the hysteresis effects of wing rock
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for each part. To verify the effectiveness and robustness of
the proposed method, we will demonstrate the several cases
of wing rock suppression. Simulation results show that the
proposed control scheme can quickly suppress wing rock at
various AOAs and any initial conditions.

2. Wing rock model

The phase plane representation of wing rock shows that
wing rock phenomenon is dominated by nonlinear damping
and a relationship can be established with one-degree-of-
freedom analytical models [3].

The differential equation of describing wing rock is given
by [6,11,14]

φ̈ = (ρU2∞Sb/2Ixx)Cl + u (1)

where φ(t) is the roll angle, ρ is the density of air, U∞ is
the freestream velocity, S is the wing reference area, b is the
chord, Ixx is the mass moment of inertia, u(f ) is the control
input, and Cl is the rolling moment coefficients written as

Cl = b0 + b1φ + b2φ̇ + b3|φ̇|φ̇ + b4φ
3 + b5φ

2φ̇. (2)

The aerodynamic parameters bi (i = 0,1,2,3,4) are the
time-varying functions of AOA.

Substituting (2) into (1), we have [10]

φ̈ + a0φ + a1φ̇ + a2|φ̇|φ̇ + a3φ
3 + a4φ

2φ̇ = u (3)

where ai (i = 0,1,2,3,4) are the parameters relative to
free-to-roll experiment conditions [3,4]. A typical set of co-
efficients ai (at Reynolds number = 636 000) is depicted in
Fig. 1.

To illustrate the behaviors of wing rock, the uncontrolled
wing-rock motion at AOA = 32.5◦ with the initial condition
φ(0) = 0.1◦ and φ̇(0) = 0 is demonstrated in Fig. 2, which
shows a small initial disturbance is enough to cause wing
rock.

3. Hysteresis analysis of wing rock

The uncontrolled wing-rock model in (3) can be written
in the following form:

φ̈ + (
a1 + a2|φ̇| + a4φ

2)φ̇ + (a0φ + a3φ
3) = 0. (4)

Let x1 = φ and x2 = φ̇; Eq. (4) is then expressed in a state-
variable form:{

ẋ1 = x2,

ẋ2 = −(a1 + a2|x2| + a4x
2
1)x2 − (a0x1 + a3x

3
1).

(5)

Eq. (5) is further expressed in the phase-trajectory equation:

dx2

dx1
= −(a1 + a2|x2| + a4x

2
1

)
x2 − (a0x1 + a3x

3
1)

x2
. (6)

By integrating Eq. (6) and substituting x2 = ẋ1 we have

1

2
x2

2 + U(x1) = C −
t∫

0

(
a1 + a2|x2| + a4x

2
1

)
x2

2 dt (7)

Fig. 1. Coefficients ai in Eq. (3).

Fig. 2. Time history of wing rock at φ(0) = 0.1◦ and φ̇(0) = 0.

where U(x1) = ∫
(a0x1 + a3x

3
1)dx1 is the potential energy

and C is an integral constant. Define E as the total mechan-
ical energy of the system given by [15]

E = 1

2
x2

2 + U(x1). (8)
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