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and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low
or even zero in-flight emissions levels, there exists an increasing amount of international research and
development emphasis on electrification of the propulsion and power systems of aircraft. Since the late
1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation
have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone
for more ambitious transport aircraft design and integration technical approaches. The introduction of
hybrid-electric technology has dramatically expanded the design space and the full-potential of these
technologies will be drawn through synergetic, tightly-coupled morphological and systems integration
emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions.

With the aim of expanding upon the current repository of knowledge associated with hybrid-electric
propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced
Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in
this technical article. The assessment and implications of an increasing Degree-of-Hybridization for
Useful Power (Hpysg) on the overall sizing, performance as well as flight technique optimization of fuel-
battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was
analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison
to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results
showed that by increasing Hpysg, significant fuel burn reduction can be achieved; however, this also
proves to be detrimental in terms of vehicular efficiency. The potential in block fuel reduction diminishes
with increasing design range - especially for low battery gravimetric specific energies. In addition, the
narrow shape of the fuselage represents a volumetric constraint for the storage of the battery and typical
cargo. It was concluded that the short-range/regional market segment would be the most suited for the
application of such concepts. Concerning the influence of Hpysg on flight technique optimization, an
increasing Hpysg was found to have a tendency of decreasing the optimum flight speed and altitude.
Further investigation of more synergistic design and integration of the hybrid-electric motive power
system needs to be conducted in order to explore the full benefit of such technologies.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

viation today represents 2% of anthropometric carbon dioxide
(CO,) emissions [1]. Objectives for Vision 2020 of the Advisory
Council for Aeronautics Research in Europe (ACARE) target an 80%
and 50% reduction in nitrous oxide (NOy) and CO, respectively [2].
Even more ambitious goals outlined in Flightpath 2050 [3] by the
European Commission (EC) for year 2050 is a 75% reduction in
CO,-emissions per passenger kilometer (PAX.km) relative to the
capabilities of conventional aircraft of the year 2000. Furthermore,
a 90% reduction of NO,-emissions and a 65% perceived noise re-
duction is advocated. Finally, aircraft movements on the ground
have to be emission-free when taxiing. The scope of the Flightpath
2050 assessment comprises total emissions between leaving the
parking position at an origin airport (off-block) and the arrival at
position at the final destination (on-block). From an international
perspective one can compare and contrast these EC objectives to
those espoused by the International Air Transport Association [4]
by way of the Air Transport Action Group [5], the International
Civil Aviation Organization [6] and the US National Aeronautics
and Space Administration [7]. Irrespective of the agenda or gov-
ernmental office in question the conclusion is that all these targets
call for a dramatic reduction in emissions over the interim-to-long
term.

Targets for CO,-emissions as originally defined in Vision 2020
and AGAPE 2020 [8] were categorized into Airframe, Propulsion
and Power System (PPS), Air Traffic Management (ATM) and Air-
line Operations. As exemplified by Fig. 1, the Strategic Research
and Innovation Agenda (SRIA) goals [9] have been re-calibrated to
reflect the achievements assessed by the AGAPE 2020 report and a
new medium-term goal for Year Entry-into-Service (YEIS) 2035,
which is a significant point for aircraft fleet renewal. A further
elaboration of the chronologically assigned CO,-emissions targets

is a breakdown that recommends aircraft energy levels (for flight
including all on-board systems and services).

As shown in Fig. 2, the NASA Environmentally Responsible
Aviation N+ series targets [7] apply to technology freeze year as
opposed to YEIS espoused by SRIA and Flightpath 2050. A tech-
nology freeze year infers attainment of Technology Readiness Le-
vel [10] (TRL) 6, i.e. primed for a product development pro-
gramme, and generally, an interval of at least 5 years would
characterize technology freeze and YEIS milestones. If one peruses
the various targets set by N+ 3, the stated fuel/energy consump-
tion (proxy for CO,-emissions) reduction of 60% is synonymous
with the goal set by SRIA 2035. This means the N+ 3 target can be
considered to be somewhat aggressive compared to the European
goal in a temporal sense. A similar conclusion can be drawn when
conducting a comparison of Landing-Takeoff cycle (LTO)
NO,-emissions targets.

In keeping with the review conducted by Isikveren and
Schmidt [11], focusing on the SRIA goals, in order to realize a total
60% reduction in fuel burn and corresponding CO,-emissions per
PAX.km for target YEIS 2035, SRIA 2035 [9] suggests 51% from
combined Airframe and PPS, and, 9% from improved ATM and
operational efficiency. If one extends beyond year 2035 in order to
consider a plausible strategy for Flightpath 2050, according to SRIA
2050 a possible breakdown for the total 75% reduction in
CO,-emissions would be 68% from Airframe and PPS combined,
and, the remaining 7% of this 75% total from improvements
through ATM and Operations. Data compiled from various in-
vestigations have shown the PPS category demands an efficiency
improvement of approximately 80% over the reference year 2000
[12]. Advanced gas-turbine concepts, such as those based upon the
classic Joule-Brayton cycle through intercooling and recuperation
is expected to lead to thermal efficiencies of around 50% or even
slightly higher, and, a further overall gain might be realized
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