Contents lists available at ScienceDirect

CrossMark

journal homepage: www.elsevier.com/locate/paerosci

Conceptual design of hybrid-electric transport aircraft

Bauhaus Luftfahrt, Ottobrunn 85521, Germany

ARTICLE INFO

Article history: Received 20 April 2015 Received in revised form 15 September 2015 Accepted 16 September 2015 Available online 9 October 2015

Keywords: Hybrid-electric transport aircraft Fuel-battery hybrid Aircraft design Aircraft sizing Integrated performance

ABSTRACT

The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (H_{P,USE}) on the overall sizing, performance as well as flight technique optimization of fuelbattery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing H_{PLISF} , significant fuel burn reduction can be achieved; however, this also proves to be detrimental in terms of vehicular efficiency. The potential in block fuel reduction diminishes with increasing design range - especially for low battery gravimetric specific energies. In addition, the narrow shape of the fuselage represents a volumetric constraint for the storage of the battery and typical cargo. It was concluded that the short-range/regional market segment would be the most suited for the application of such concepts. Concerning the influence of H_{PUSE} on flight technique optimization, an increasing $H_{P,USE}$ was found to have a tendency of decreasing the optimum flight speed and altitude. Further investigation of more synergistic design and integration of the hybrid-electric motive power system needs to be conducted in order to explore the full benefit of such technologies.

© 2015 Elsevier Ltd. All rights reserved.

Contents

1.	Introd	luction	115
2.	Aircra	aft morphologies and systems architectures for electro-mobility	119
	2.1.	Topological options, taxonometric conventions and algebraic descriptors	119
	2.2.	Integrated propulsion and power for fixed-wing aviation	120
		2.2.1. Experimental and commercial activities	120
		2.2.2. Synergy with distributed propulsion and survey of future concepts	121
	2.3.	Scope of investigative work in this article	122
3.	Sizing	g scheme for the hybrid-electric propulsion system	123

² Head, Visionary Aircraft Concepts.

http://dx.doi.org/10.1016/j.paerosci.2015.09.002 0376-0421/© 2015 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

¹ Researcher, Integrated Hybrid-Energy Propulsion and Power Systems, Visionary Aircraft Concepts.

	3.1.	Flow path sizing of the Turbofan and Electrical Fan	123				
	3.2.	Turbofan model	123				
	3.3.	Ducted fan model and sizing strategy of the electric motor	123				
	3.4.	Discussion about the model and its limitations	124				
	3.5.	Electrical system characteristics	125				
4.	Aircrat	ft sizing and integrated performance	125				
	4.1.	Parametric descriptors and qualitative pre-design investigation	125				
	4.2.	Aircraft Top-level Requirements	126				
	4.3.	Design mission	126				
	4.4.	Aircraft sizing	127				
		4.4.1. Sizing guidelines	127				
		4.4.2. Electric motor critical sizing conditions	127				
	4.5.	Relative change in block esar versus relative change in block fuel	127				
	4.6.	Relative change in block COSAR versus relative change in block fuel.	128				
	4.7.	Relative change in MTOW versus the Degree-of-Hybridization for Useful Power	128				
	4.8.	Relative change in point ESAR versus the Degree-of-Hybridization for Useful Power	129				
	4.9.	Influence of Degree-of-Hybridization for Useful Power on the combustion-based propulsion system efficiency	129				
	4.10.	Influence of the Degree-of-Hybridization for Useful Power on take-off performance	130				
	4.11.	Sensitivity study according to battery gravimetric specific energy	130				
5.	Influe	nce of the Degree-of-Hybridization for Useful Power on flight technique optimization	130				
6.	Aircra	ft characteristics and benchmark	132				
	6.1.	Aircraft benckmark	132				
		6.1.1. Aircraft main data	132				
		6.1.2. Aircraft mass breakdown	132				
	6.2.	Optimum flight technique analysis	132				
		6.2.1. Reference aircraft	133				
		6.2.2. Hybrid-electric aircraft	134				
7.	Conclu	1sion	134				
Acknowledgments							
Appendix A. Supplementary material.							
References							

1. Introduction

viation today represents 2% of anthropometric carbon dioxide (CO_2) emissions [1]. Objectives for Vision 2020 of the Advisory Council for Aeronautics Research in Europe (ACARE) target an 80% and 50% reduction in nitrous oxide (NO_x) and CO_2 respectively [2]. Even more ambitious goals outlined in Flightpath 2050 [3] by the European Commission (EC) for year 2050 is a 75% reduction in CO₂-emissions per passenger kilometer (PAX.km) relative to the capabilities of conventional aircraft of the year 2000. Furthermore, a 90% reduction of NO_x-emissions and a 65% perceived noise reduction is advocated. Finally, aircraft movements on the ground have to be emission-free when taxiing. The scope of the Flightpath 2050 assessment comprises total emissions between leaving the parking position at an origin airport (off-block) and the arrival at position at the final destination (on-block). From an international perspective one can compare and contrast these EC objectives to those espoused by the International Air Transport Association [4] by way of the Air Transport Action Group [5], the International Civil Aviation Organization [6] and the US National Aeronautics and Space Administration [7]. Irrespective of the agenda or governmental office in question the conclusion is that all these targets call for a dramatic reduction in emissions over the interim-to-long term.

Targets for CO₂-emissions as originally defined in Vision 2020 and AGAPE 2020 [8] were categorized into Airframe, Propulsion and Power System (PPS), Air Traffic Management (ATM) and Airline Operations. As exemplified by Fig. 1, the Strategic Research and Innovation Agenda (SRIA) goals [9] have been re-calibrated to reflect the achievements assessed by the AGAPE 2020 report and a new medium-term goal for Year Entry-into-Service (YEIS) 2035, which is a significant point for aircraft fleet renewal. A further elaboration of the chronologically assigned CO₂-emissions targets is a breakdown that recommends aircraft energy levels (for flight including all on-board systems and services).

As shown in Fig. 2, the NASA Environmentally Responsible Aviation N+ series targets [7] apply to technology freeze year as opposed to YEIS espoused by SRIA and Flightpath 2050. A technology freeze year infers attainment of Technology Readiness Level [10] (TRL) 6, i.e. primed for a product development programme, and generally, an interval of at least 5 years would characterize technology freeze and YEIS milestones. If one peruses the various targets set by N+3, the stated fuel/energy consumption (proxy for CO₂-emissions) reduction of 60% is synonymous with the goal set by SRIA 2035. This means the N+3 target can be considered to be somewhat aggressive compared to the European goal in a temporal sense. A similar conclusion can be drawn when conducting a comparison of Landing–Takeoff cycle (LTO) NO_x-emissions targets.

In keeping with the review conducted by Isikveren and Schmidt [11], focusing on the SRIA goals, in order to realize a total 60% reduction in fuel burn and corresponding CO₂-emissions per PAX.km for target YEIS 2035, SRIA 2035 [9] suggests 51% from combined Airframe and PPS, and, 9% from improved ATM and operational efficiency. If one extends beyond year 2035 in order to consider a plausible strategy for Flightpath 2050, according to SRIA 2050 a possible breakdown for the total 75% reduction in CO₂-emissions would be 68% from Airframe and PPS combined, and, the remaining 7% of this 75% total from improvements through ATM and Operations. Data compiled from various investigations have shown the PPS category demands an efficiency improvement of approximately 80% over the reference year 2000 [12]. Advanced gas-turbine concepts, such as those based upon the classic Joule-Brayton cycle through intercooling and recuperation is expected to lead to thermal efficiencies of around 50% or even slightly higher, and, a further overall gain might be realized Download English Version:

https://daneshyari.com/en/article/1719177

Download Persian Version:

https://daneshyari.com/article/1719177

Daneshyari.com