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a b s t r a c t

This is the second of two articles with the main, and largely self-explanatory, title “Rotor theories by
Professor Joukowsky”. This article considers rotors with finite number of blades and is subtitled “Vortex
theories”. The first article with subtitle “Momentum theories”, assessed the starring role of Joukowsky in
aerodynamics in the historical context of rotor theory. The main focus in both articles is on wind turbine
rotors, but much of the basic theory applies to propellers and helicopters as well. Thus this second article
concentrates on the so-called blade element theory, the Kutta–Joukowsky theorem, and the develop-
ment of the rotor vortex theory of Joukowsky. This article is to a large extent based on our own work,
which constitutes the first successful completion and further development of Joukowsky's work by
deriving the first analytical solution of his rotor. This rotor has a finite number of blades and will be
compared with the rotor analysis of Betz and of others of the German school of aerodynamics.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

This is the second of two articles with the main, and largely self-
explanatory, title “Rotor theories by Professor Joukowsky”. This
article considers rotors with finite number of blades and is subtitled
“Vortex theories”. The first article with subtitle “Momentum the-
ories” [1], assessed the starring role of Joukowsky in aerodynamics in
the historical context of rotor theory. The main focus in both articles
is on wind turbine rotors, but much of the basic theory applies to
propellers and helicopters as well. Froude's momentum theory for an
actuator disc was the first elementary one-dimensional model of a
rotor which was sufficiently accurate to describe correctly the
averaged and simplified structure of the flow, and establish the
Betz–Joukowsky limit for the optimum performance of wind tur-
bines. We have ascertained the role of Joukowsky in the derivation of
this important limit on wind power conversion efficiency. Joukows-
ky's general momentum theory for actuator discs became the next
stage in the development of rotor aerodynamics [1]. This theory
followed from his understanding of the physical principles of the
rotor operation based on vortex theory of screw propellers with
constant circulation along the blade. In Ref. [1] we have analyzed the
difficulties encountered when applying the general rotor momentum
theory proposed by Joukowsky about a century ago onwind turbines.
Undoubtedly, the general momentum theory of the rotor, as well as
the simpler theory of Rankine–Froude, is still far from perfect due to
simplifying assumptions and conditions.

The simple momentum theories described in Ref. [1] were not
sufficient to design propeller blades, which was the most impor-
tant rotor configuration of the time. Therefore, in parallel, a
specific design method was developed, which was based on
dividing a blade into a number of span-wise sections and using
vortex theory to determine the induced velocities. Thus this
second article concentrates on the so-called blade element theory,
the Kutta–Joukowsky theorem, and the development of the rotor
vortex theory of Joukowsky. The article is to a large extent based
on our own work, which constitutes the first successful comple-
tion and further development of Joukowsky's work by deriving the
first analytical solution of the NEJ rotor. The acronym NEJ comes
from the initial letters of Joukowsky's name (Nikolay Egorovich
Joukowsky1). This rotor has a finite number of blades and will be
compared with the rotor analysis of Betz and of others of the
German school.

Section 2 presents new historical facts regarding the Kutta–
Joukowsky (KJ) theorem, as well as a review of the blade element
momentum (BEM) method and the development of rotor vortex
theories for estimating helical vortex structures, and Joukowsky's
role in this development. Section 3 presents the most important
steps in the development of the BEM theory, concluded with a
derivation of the KJ theorem for a cascade of blade elements. The
use of the KJ theorem to lifting line theory of rotors with finite
number of blades is continued in Section 4, where the final results
are presented. Furthermore, the section provides a comparison
and a critical review of different erroneous vortex theories of
rotors.

2. Blade element momentum and vortex theories: retrospect

2.1. The history of the Kutta–Joukowsky (KJ) theorem

The history of Kutta and Joukowsky (Fig. 1) and their famous
equation or theorem (KJ) is, even among experts, almost unknown.

For example, Anderson [2] (page 391) correctly credits Joukowsky
[3] for deriving the KJ equation in 1906, but claims at the same
time that Joukowsky was unaware of Kutta's work [4] (published
in 1902: English translation in Ackroyd et al. [5]). This may not be
strictly true, although there is no reference to Kutta in the 1906
paper. However, this may not be relevant, as Joukowsky without
doubt was aware of the Kutta condition. Furthermore, Kutta did
not derive the KJ equation. According to Panton [6] (page 427), the
KJ equation was named “after the two people who discovered it
independently”. This may be the result of a secondary referencing,
as Lamb [7] (page 681) surprisingly also attributes the equation to
both.2

Kutta [4] derived an equation for the lift for a thin, circular arc
airfoil in an inviscid flow obeying the Kutta condition, which states
that the flow leaves the airfoil smoothly at the trailing edge. He did
not name the condition and he did not mention circulation and its
relationship to the lift force. In 1910 Joukowsky [8] reviewed
Kutta's work, re-derived his equation for lift, introduced the
circulation and denoted the trailing edge conditions the Kutta
condition, probably for the first time.3 He then derived the Kutta–
Joukowsky (KJ) theorem relating lift to the circulation around a
body immersed in a two-dimensional flow of an otherwise
inviscid fluid. This paper is one of the masterpieces of early
aerodynamics research.

In 1906, between these two papers, came Joukowsky [3], whose
title can be translated as “On Bound Vortices”, although it appears
in Ackroyd et al. [5] as “On Annexed Vortices”. He associated the
body with the closed streamlines around a vortex of specified
strength. He chose (in effect) a large circular control volume (CV)
of radius R centered on the body and used the condition that the
velocity potential of the flow perturbed by a body decays as R�2

for sufficiently large R, so that there is no efflux of momentum
from the CV. Thus the force due to pressure at R, determined using
Bernoulli's equation, must be equal and opposite to that on the
body. From this he derived the general form of what is now called
the KJ equation, which is derived in a simpler manner below as
Eq. (35). In 1910 Kutta [9] (English translation in Ackroyd et al. [5])
referred to Joukowsky [3] and extended the analysis of the circular
arc airfoils. He also noted that his thesis [4] contained a much
more detailed analysis including the KJ theorem. That thesis has

Fig. 1. Originators of the Kutta condition and the KJ theorem: M. Kutta and
N.E. Joukowsky.

1 Alternatively, his name is spelled Zhukovskii, Joukowski, Joukovskii or
Žukovskij etc.

2 Ref. [7] is the last, 1945 edition. There is no reference to Kutta in the 1906
edition. The comments on the KJ equation cited here were also in the 1916 edition
which introduced them.

3 In this connection it is interesting that the Kutta condition has been known as
the Joukowsky–Chaplygin condition in Russia (Prof. S.A. Chaplygin was a colleague
of Joukowsky). Consequently, in order to honor all initiators, this result should be
re-named the “Kutta–Joukowsky–Chaplygin condition”. The well-established and
convenient name Kutta condition should be considered as an easy abbreviation of
this full name.
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